Российский журнал Гастроэнтерологии, Гепатологии, Колопроктологии
Отправка Рукописи

Отправить рукопись

Поиск

Расширенный поиск
Авторизация на сайте / вход в личный кабинет




  запомнить меня

Регистрация
Информация
Российский журнал Гастроэнтерологии, Гепатологии, Колопроктологии издается ИД «М-Вести». 127018, г. Москва, ул. Cкладочная, д.3, стр. 3. Тел/факс: +7 (495) 980-8928.     
E-mail: editorial@gastro-j.ru

Перепечатка и любое воспроизведение материалов сайта возможны лишь с письменного разрешения администраниции и с прямой гиперссылкой на данный сайт.
Дизайн и создание сайта
«Insight-Studio»
Дизайн и создание сайта «Insight-Studio»
Абстракт
Полный текст  |  PDF  |  Перейти к содержанию номера

Рос журн гастроэнтерол гепатол колопроктол 2017; 27(5):11-19

Рубрика: Лекции и обзоры

Кишечный микробиом как фактор регуляции деятельности энтеральной и центральной нервной системы     



В.Т. Ивашкин1,2, К.В. Ивашкин1
 
1Кафедра пропедевтики внутренних болезней ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» (Сеченовский университет) Минздрава России, г. Москва, Российская Федерация
2НИО инновационной терапии ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» (Сеченовский университет) Минздрава России, г. Москва, Российская Федерация



Цель обзора. Изучить и объединить в одном обзоре современные данные о влиянии прои пребиотиков на микробиом, моторику кишечника и энтеральную нервную систему.

Основные положения. Существуют объективные данные о способности кишечных бактерий регулировать электрофизиологические пороги нейронов энтеральной нервной системы и продуцировать спектр нейротрансмиттеров. На основании этих данных можно предположить наличие прямых, индуцируемых микробиотой, ответов энтеральной нервной системы, а также ее развития и поддержания гомеостаза кишечной популяции глиальных клеток. Доказательств прямого участия этих нейротрансмиттеров в регуляции синаптической активности проксимальных нейронов энтеральной нервной системы не получено. Однако факт продукции нейротрансмиттеров в непосредственной близости от кишечной стенки создает основу для проведения исследований.

Заключение. Изучение влияния прои пребиотиков на энтеральную нервную систему представляет огромный интерес. Накопленные данные меняют представления о микробиоме человека и его возможностях, однако необходимо дальнейшее проведение клинических исследований.


Ключевые слова:
микробиом, центральная нервная система, энтеральная нервная система, нейротрансмиттеры, синаптическая активность, пробиотики, пребиотики.

Для цитирования:
Ивашкин В.Т., Ивашкин К.В. Кишечный микробиом как фактор регуляции деятельности энтеральной и центральной нервной системы. Рос журн гастроэнтерол гепатол колопроктол 2017; 27(5):11-19
DOI: 10.22416/1382-4376-2017-27-5-11-19


Список литературы:
1. Collins J., Borojevic R., Verdu E.F., Huizinga J.D., Ratcliffe E.M. Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterol Motil 2014;26(1):98-107.
2. Bercik P., Park A.J., Sinclair D., Khoshdel A., Lu J., Huang X., Deng Y., Blennerhassett P.A., Fah‑ nestock M., Moine D., Berger B., Huizinga J.D. et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 2011; 23(12):1132-9.
3. Kunze W.A., Mao Y.K., Wang B., Huizinga J.D., Ma X., Forsythe P., Bienenstock J. Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. J Cell Mol Med 2009; 13(8B):2261-70.
4. Cryan J.F., Dinan T.G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012; 13(10): 701-12.
5. Lomasney K.W., Houston A., Shanahan F., Dinan T.G., Cryan J.F., Hyland N.P. Selective influence of host microbiota on cAMP-mediated ion transport in mouse colon. Neurogastroenterol Motil 2014;26(6):887-90.
6. Foster J.A., McVey Neufeld K.A. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 2013; 36(5):305-12.
7. Kabouridis P.S., Lasrado R., McCallum S., Chng S.H., Snipper H.J., Clevers H., Pettersson S., Pachnis V. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron 2015; 85(2):289-95.
8. Dinan T.G., Stilling R.M., Stanton C., Cryan J.F.. Collective unconscious: how gut microbes shape human behavior. J Psychiatr Res 2015; 63:1-9.
9. Thayer J.F., Sternberg E.M. Neural concomitants of immunity: focus on the vagus nerve. Neuroimage 2009; 47(3):908-10.
10. de Haan J.J., Hadfoune M., Lubbers T., Hodin C., Lenaerts K., Ito A. et al. Lipid-rich enteral nutrition regulates mucosal mast cell activation via the vagal antiinflammatory reflex. Am J Physiol Gastrointest Liver Physiol 2013; 305(5):G383-G391.
11. Bercik P., Denou E., Collins J., Jackson W., Lu J., Jury J. et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 2011; 141(2):599-609.
12. Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464(7285):59-65.
13. Horn T., Klein J. Neuroprotective effects of lactate in brain ischemia: dependence on anesthetic drugs. Neurochem Int 2013; 62(3):251-7.
14. Perry R.J., Peng L., Barry N.A., Cline G.W., Zhang D., Cardone R.L. et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature 2016; 534(7606): 213-7.
15. Overduin J., Schoterman M.H., Calame W., Schone‑ wille A.J., Ten Bruggencate S.J. Dietary galacto-oligosaccharides and calcium: effects on energy intake, fat-pad weight and satiety-related, gastrointestinal hormones in rats. Br J Nutr 2013; 109(7):1338-48.
16. Erny D., Hrabe de Angelis A.L., Jaitin D., Wieghofer P., Staszewski O., David E. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015; 18(7):965-77.
17. Gagliano H., Delgado‑Morales R., Sanz‑Garcia A., Armario A. High doses of the histone deacetylase inhibitor sodium butyrate trigger a stress-like response. Neuropharmacology 2014; 79:75-82.
18. Alenghat T., Artis D. Epigenomic regulation of host-microbiota interactions. Trends Immunol 2014; 35(11):518-25.
19. Perry R.J., Peng L., Barry N.A., Cline G.W., Zhang D., Cardone R.L. et al. Acetate mediates a microbiome-brain-β cell axis promoting metabolic syndrome. Nature 2016; 534(7606):213-7.
20. Psichas A., Sleeth M.L., Murphy K.G., Brooks L., Bewick G.A., Hanyaloglu A.C. et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes 2015; 39(3):424-9.
21. Stadlbauer U., Woods S.C., Langhans W., Meyer U. PYY3-36: Beyond food intake. Front Neuroendocrinol 2015; 38:1-11.
22. Yano J.M., Yu K., Donaldson G.P., Shastri G.G., Ann P., Ma L. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015; 161(2):264-76.
23. Chu H., Mazmanian S.K. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol 2013; 14: 668-75.
24. Zhou W., Lv H., Li M.X., Su H., Huang L.G., Li J., Yuan W.M. Protective effects of bifidobacteria on intestines in newborn rats with necrotizing enterocolitis and its regulation on TLR2 and TLR4. Genet Mol Res 2015; 14(3):11505-14.
25. Eiwegger T., Stahl B., Haidl P., Schmitt J., Boehm G., Dehlink E. et al. Prebiotic oligosaccharides: in vitro evidence for gastrointestinal epithelial transfer and immunomodulatory properties. Pediatr Allergy Immunol 2010;21(8):1179-88.
26. Miller A.H., Haroon E., Raison C.L., Felger J.C. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety 2013; 30(4):297-306.
27. Felger J.C., Lotrich F.E. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience 2013; 246: 199-229.
28. O’Mahony L., McCarthy J., Kelly P., Hurley G., Luo F., Chen K. et al. Lactobacillus and Bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 2005; 128(3):541-51.
29. Donato K.A., Gareau M.G., Wang Y.J., Sherman P.M. Lactobacillus rhamnosus GG attenuates interferon-γ and tumour necrosis factor-α-induced barrier dysfunction and pro-inflammatory signalling. Microbiology 2010; 156(Pt 11):3288-97.
30. O’Hara A.M., O’Regan P., Fanning A., O’Mahony C., Macsharry J., Lyons A. et al. Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus salivarius. Immunology 2006; 118(2):202-15.
31. Redhu N., Shouval D., Bakthavatchalu V., Wang C., Conaway E., Goettel J. et al. O-005 YI microbiota drives inflammation by altering intestinal lamina propria macrophage phenotype in a novel IL10R-deficient model of very early onset IBD. Inflamm Bowel Dis 2016; 22(suppl 1):S2-S3.
32. Kim K.S., Hong S.W., Han D., Yi J., Jung J., Yang B.G. et al. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science 2016; 351(6275):858-63.
33. Bharwani A., Mian M.F., Foster J.A., Surette M.G., Bienenstock J., Forsythe P. Structural & functional consequences of chronic psychosocial stress on the microbiome & host. Psychoneuroendocrinology 2016; 63:217-27.
34. Söderholm J.D., Perdue M.H. Stress and intestinal barrier function. Am J Physiol Gastrointest Liver Physiol 2001; 280(1):G7-G13.
35. Mass M., Kubera M., Leunis J.C. The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuro Endocrinol Lett 2008; 29(1):117-24.
36. Maes M., Kubera M., Leunis J.C., Berk M. Increased IgA and IgM responses against gut commensals in chronic depression: further evidence for increased bacterial translocation or leaky gut. J Affect Disord 2012; 141(1):55-62.
37. Ait‑Belgnaoui A., Durand H., Cartier C., Chaumaz G., Eutamene H., Ferrier L. et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 2012; 37(11):1885-95.
38. Schmidt K., Cowen P.J., Harmer C.J., Tzortzis G., Errington S., Burnet P.W. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology (Berl) 2015; 232(10):1793-1801.
39. David L.A., Maurice C.F., Carmody R.N., Gooten‑ berg D.B., Button J.E., Wolfe B.E. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505(7484):559-63.
40. Kang S.S., Jeraldo P.R., Kurti A., Miller M.E., Cook M.D., Whitlock K. et al. Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Mol Neurodegener 2014; 9:36.
41. Kristensen N.B., Bryrup T., Allin K.H., Nielsen T., Hansen T.H., Pedersen O. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med 2016; 8(1):52.
42. Claesson M.J., Jeffery I.B., Conde S., Power S.E., O’Connor E.M., Cusack S. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012; 488(7410):178-84.
43. Distrutti E., O’Reilly J.A., McDonald C., Cipriani S., Renga B., Lynch M.A. et al. Modulation of intestinal microbiota by the probiotic VSL# 3 resets brain gene expression and ameliorates the age-related deficit in LTP. PLoS One 2014; 9(9):e106503.
44. Janik R., Thomason L.A., Stanisz A.M., Forsythe P., Bienenstock J., Stanisz G.J. Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate. Neuroimage 2016; 125:988-95.
45. Williams S., Chen L., Savignac H.M., Tzortzis G., Anthony D.C., Burnet P.W. Neonatal prebiotic (BGOS) supplementation increases the levels of synaptophysin, GluN2A-subunits and BDNF proteins in the adult rat hippocampus. Synapse 2016; 70(3):121-4.
46. Oliveros E., Ramirez M., Vazquez E., Barranco A., Gruart A., Delgado‑Garcia J.M. et al. Oral supplementation of 2′-fucosyllactose during lactation improves memory and learning in rats. J Nutr Biochem 2016; 31:207.
47. Matthews D.M., Jenks S.M. Ingestion of Mycobacterium vaccae decreases anxiety-related behavior and improves learning in mice. Behav Processes 2013; 96:27-35.
48. Vázquez E., Barranco A., Ramirez M., Gruart A., Delgado‑Garcia J.M., Martinez‑Lara E. et al. Effects of a human milk oligosaccharide, 2′-fucosyllactose, on hippocampal long-term potentiation and learning capabilities in rodents. J Nutr Biochem 2015; 26(5):45565.
49. Benton D., Williams C., Brown A. Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur J Clin Nutr 2007; 61(3):355-61.
50. Messaoudi M., Violle N., Bisson J.F., Desor D., Javelot H., Rougeot C. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2011; 2(4):256-61.
51. Savignac H.M., Corona G., Mills H., Chen L., Spencer J.P., Tzortzis G. et al. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-daspartate receptor subunits and d-serine. Neurochem Int 2013; 63(8):756-64.
52. Savignac H.M., Kiely B., Dinan T.G., Cryan J.F. Bifidobacteria exert strain-specific effects on stressrelated behavior and physiology in BALB/c mice. Neurogastroenterol Motil 2014;26(11):1615-27.
53. Savignac H.M., Tramullas M., Kiely B., Dinan T.G., Cryan J.F. Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behav Brain Res 2015; 287:5972.
54. Steenbergen L., Sellaro R., van Hemert S., Bosch J.A., Colzato L.S. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun 2015; 48:258-64.
55. Ohland C.L., Kish L., Bell H., Thiesen A., Hotte N., Pankiv E. et al. Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology 2013; 38(9):1738-47.



Полный текст  |  PDF  |  Перейти к содержанию номера