Российский журнал Гастроэнтерологии, Гепатологии, Колопроктологии
Отправка Рукописи

Отправить рукопись

Поиск

Расширенный поиск
Авторизация на сайте / вход в личный кабинет




  запомнить меня

Регистрация
Информация
Российский журнал Гастроэнтерологии, Гепатологии, Колопроктологии издается ИД «М-Вести». 127018, г. Москва, ул. Cкладочная, д.3, стр. 3. Тел/факс: +7 (495) 980-8928.     
E-mail: editorial@gastro-j.ru




Контент «Российского журнала гастроэнтерологии, гепатологии, колопроктологии» доступен под лицензией Creative Commons Attribution License CCBY-NC-ND Creative Commons Attribution License CCBY-NC-ND
Дизайн и создание сайта
«Insight-Studio»
Дизайн и создание сайта «Insight-Studio»
Абстракт
Полный текст  |  PDF  |  « Пред. статья номера   |   Перейти к содержанию номера   |   След. статья номера »

Рос журн гастроэнтерол гепатол колопроктол 2018; 28(2):4-10

Рубрика: Обзоры

Метаболизм желчных кислот, заболевания печени и микробиом




Ю.В. Евсютина1,2, В.Т. Ивашкин1
 
1 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» (Сеченовский университет) Минздрава России, г. Москва, Российская Федерация
2 ФГБУ «Национальный медицинский исследовательский центр профилактической медицины» Минздрава России, г. Москва, Российская Федерация


Цель обзора. Представить современные данные о взаимосвязи метаболизма желчных кислот (ЖК), микробиома и заболеваний печени.

Основные положения. ЖК — важные сигнальные молекулы, регулирующие метаболизм липидов и глюкозы. Энтерогепатическая циркуляция ЖК занимает центральное место в абсорбции нутриентов и их метаболической регуляции. Результаты исследований свидетельствуют о взаимосвязи ЖК, кишечного микробиома и заболеваний печени. В частности, хорошо изучена роль нарушения метаболизма ЖК в развитии неалкогольной жировой болезни печени. Практический интерес представляют секвестранты ЖК, которые продолжают изучать как регуляторы метаболизма ЖК и глюкозы.

Заключение. ЖК выполняют разнообразные функции в организме. Результаты многочисленных работ демонстрируют тесную связь между метаболизмом ЖК, патологией печени и кишечным микробиомом.


Ключевые слова:
микробиом, желчные кислоты, неалкогольная жировая болезнь печени, секвестранты желчных кислот, инфекция Clostridium difficile.          

Для цитирования: Евсютина Ю.В., Ивашкин В.Т. Метаболизм желчных кислот, заболевания печени и микробиом. Рос журн гастроэнтерол гепатол колопроктол 2018; 28(2):4-10 DOI: 10.22416/1382-4376-2018-28-2-4-10



Список литературы:
1. Chiang Y.L. Bile Acid Metabolism and Signaling. Compr Physiol 2013; 3(3):1191-212.
2. Boyer J.L. Bile Formation and Secretion. Compr Physiol 2013; 3(3):1035-78.
3. Li T., Apte U. Bile acid metabolism and signaling in cholestasis, inflammation and cancer. Adv Pharmacol 2015; 74:263-302.
4. Dawson Р.A., Karpen S.J. Intestinal transport and metabolism of bile acids. J Lipid Res 2015; 56(6):1085-99.
5. Ridlon J.M., Harris S.C., Bhowmik S. et al. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 2016; 7(1):22-39.
6. Li T., Chiang Y.L. Bile acids as metabolic regulators. Curr Opin Gastroenterol 2015; 31(2):159-65.
7. Dawson P.A., Hubbert M.L., Rao A. Getting the mOST from OST: Role of organic solute transporter, OSTalphaOSTbeta, in bile acid and steroid metabolism. Biochim Biophys Acta 2010; 1801:994-1004.
8. Vallim de Aguiar T.Q., Tarling E.J., Edwards P.A. Pleiotropic Roles of Bile Acids in Metabolism. Cell Metab 2013; 17(5):657-69.
9. Bajaj J.S., Ridlon J.M., Hylemon P.B. et al. Linkage of gut microbiome with cognition in hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol 2012; 302:16875.
10. Bajaj J.S., Hylemon P.B., Ridlon J.M. et al. Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am J Physiol Gastrointest Liver Physiol 2012; 303:675-85.
11. Kakiyama G., Pandak W.M., Gillevet P.M. et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol 2013; 58(5):949-55.
12. Ridlon J.M., Kang D.J., Hylemon P.B. et al. Bile Acids and the Gut Microbiome. Curr Opin Gastroenterol 2014; 30(3):332-8.
13. Bajaj J.S., Heuman D.M., Hylemon P.B. et al. The Cirrhosis Dysbiosis Ratio defines Changes in the Gut Microbiome Associated with Cirrhosis and its Complications. J Hepatol 2014; 60(5):940-7.
14. Islam K.B., Fukiya S., Hagio M. et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 2011;141(5):1773-81.
15. Tilg H., Moschen А.R., Roden М. NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol 2017; 14:32-42.
16. Zhu Y., Liu H., Zhang M. et al. Fatty liver diseases, bile acids, and FXR. Acta Pharm Sin B 2016; 6(5):409-12.
17. Xu J.Y., Li Z.P., Zhang L. et al. Recent insights into farnesoid X receptor in non-alcoholic fatty liver disease. World J Gastroenterol 2014:7; 20(37):13493-500.
18. Mudaliar S., Henry R., Sanyal A.J. et al. Efficacy and Safety of the Farnesoid X Receptor Agonist Obeticholic Acid in Patients With Type 2 Diabetes and Nonalcoholic Fatty Liver Disease. Gastroenterology 2013; 145:574-82.
19. Neuschwander-Tetri B.A., Loomba R., Sanyal A.J. et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 2015; 385:956-65.
20. Kuribayashi H., Miyata M., Yamakawa H. et al. Enterobacteria-mediated deconjugation of taurocholic acid enhances ileal farnesoid X receptor signaling. Eur J Pharmacol 2012; 697(1-3):132-8.
21. Sayin S.I., Wahlstrom A., Felin J. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 2013; 17(2):225-35.
22. Swann J.R., Want E.J., Geier F.M. et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Nat Acad Sci USA 2011; 108(Suppl 1):4523-30.
23. Ryan K.K., Tremaroli V., Clemmensen C. et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 2014; 509(7499):183-8.
24. Bashiardes S., Shapiro H., Rozin S. et al. Non-alcoholic fatty liver and the gut microbiota. Mol Metab 2016; 5(9):782-94.
25. Mouzaki M., Wang A.Y., Bandsma R. et al. Bile acids and dysbiosis in non-alcoholic fatty liver disease. PloS One 2016; 11(5): e0151829.
26. Levy M., Thaiss C.A., Zeevi D. et al. Microbiotamodulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 2015 Dec 3;163(6):1428-43.
27. Goldberg R.B., Fonseca V.A., Truitt K.E. et al. Efficacy and safety of colesevelam in patients with type 2 diabetes mellitus and inadequate glycemic control receiving insulinbased therapy. Arch Intern Med 2008; 168:1531-40.
28. Sonne D.P., Hansen M., Knop F.K. Bile acid sequestrants in type 2 diabetes: potential effects on GLP1 secretion. European journal of endocrinology. Eur Federat Endocr Soc 2014; 171:47-65.
29. Holst J.J. The physiology of glucagon-like peptide 1. Physiol Rev 2007; 87:1409-39.
30. Thomas C., Gioiello A., Noriega L. et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 2009; 10:167-77.
31. Harach T., Pols T.W., Nomura M. et al. TGR5 potentiates GLP-1 secretion in response to anionic exchange resins. Sci Report 2012; 2:430.
32. Potthoff M.J., Potts A., He T. et al. Colesevelam suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice. Am J Physiol Gastrointest Liv Physiol 2013; 304:371-80.
33. Hofmann A.F. Bile acid sequestrants improve glycemic control in type 2 diabetes: a proposed mechanism implicating glucagon-like peptide 1 release. Hepatology 2011; 53:1784.
34. Devkota S., Wang Y., Musch M.W. et al. Dietary fatinduced taurocholic acid promotes pathobiont expansion and colitis in Il10-/mice. Nature 2012; 487:104-8.
35. Devkota S., Chang E.B. Interactions between diet, bile acid metabolism, gut microbiota, and inflammatory bowel diseases. Dig Dis 2015; 33:351-6.
36. Caesar R., Tremaroli V., Kovatcheva-Datchary P. et al. Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling. Cell Metab 2015; 22:658-68.
37. Lessa F.C., Mu Y., Bamberg W.M. et al. Burden of Clostridium difficile infection in the United States. N Engl J Med 2015; 26; 372(9):825-34.
38. van Nood E., Vrieze A., Nieuwdorp M. et al. Duodenal infusion of feces for recurrent Clostridium difficile. N Engl J Med 2013; 368(22):407-15.
39. Buffie C.G., Bucci V., Stein R.R. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 2015; 517(7533):205-8.
40. Wilson K.H., Kennedy M.J., Fekety F.R. Use of sodium taurocholate to enhance spore recovery on a medium selective for Clostridium difficile. J Clin Microbiol 1982; (3):443-6.
41. Sorg J.A., Sonenshein A.L. Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J Bacteriol 2010; 192(19):4983-90.
42. Sorg J.A., Sonenshein A.L. Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol 2008; 190(7):2505-12.
43. Francis M.B., Allen C.A., Sorg J.A. Muricholic acids inhibit Clostridium difficile spore germination and growth. PLoS One 2013; 8(9):e73653.
44. Francis M.B., Allen C.A., Shrestha R. et al. Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection. PLoS Pathog 2013; 9(5):e1003356.



Полный текст  |  PDF  |  « Пред. статья номера   |   Перейти к содержанию номера   |   След. статья номера »