РЖГТ № **6**, 2014 Гепатология

Фиброз печени и маркёры функции эндотелия у пациентов с метаболическим синдромом и ранними нарушениями углеводного обмена

Л. В. Чеснокова¹, И. М. Петров¹, Е. А. Сидорова¹, И. А. Трошина¹, Ю. А. Петрова²

Минздрава России, г. Тюмень, Российская Федерация

Liver fibrosis and markers of endothelial function at metabolic syndrome and early disorders of carbohydrate metabolism

L. V. Chesnokova¹, I. M. Petrov¹, Ye. A. Sidorova¹, I. A. Troshina¹, Yu. A. Petrova²

¹ State educational government-financed institution of higher professional education

«Tyumen state medical academy», Ministry of Healthcare of the Russian Federation, Tyumen, Russian Federation

² State educational government-financed institution of higher professional education

«Tyumen state oil-and-gas university», Tyumen, Russian Federation

Цель исследования. Комплексная оценка функционального состояния эндотелия у пациентов с *неалкогольной жировой болезнью печени* (НАЖБП) в ассоциации с ранними нарушениями углеводного обмена в зависимости от выраженности фиброза печени.

Материал и методы. Обследовано 67 пациентов с метаболическим синдромом (МС) в сочетании с ранними нарушениями углеводного обмена (женщин 71,6%) в возрасте 47,5 (42–49) года, значения индекса массы тела 34,6 (32,4–38,4) кг/м². У 72%

Aim of investigation. Complex estimation of endothelial function at *non-alcoholic fatty liver disease* (NAFLD) in association with early disorders of carbohydrate metabolism, in relation to liver fibrosis severity.

Material and methods. Overall 67 patients with *metabolic syndrome* (MS) in combination to early carbohydrate metabolism disorders (71,6% women), mean age was 47,5 (42–49 years), body mass index — 34,6 kg/m² (32,4–38,4 kg/m²) were investigated. In 72% of patients presence of NAFLD at steatosis stage and in 18% —at non-alcoholic steatohepatitis stage was found.

Чеснокова Лариса Валентиновна — кандидат медицинских наук, доцент кафедры пропедевтики внутренних болезней ГБОУ ВПО «Тюменская государственная медицинская академия». Контактная информация: l.v.chesnokova@mail.ru; 625007, г. Тюмень, ул. Одесская, д. 54

Chesnokova Larisa V-MD, lecturer, chair of hospital course of internal diseases with endocrinology module, State educational government-financed institution of higher professional education «Tyumen state medical academy». Contact information: l.v.chesnokova@mail.ru; 625007, Tyumen, Odessa street, 54

Петров Иван Михайлович — кандидат медицинских наук, ассистент кафедры госпитальной терапии с курсом эндокринологии ГБОУ ВПО «Тюменская государственная медицинская академия». Контактная информация: petrovtokb@mail.ru; 625007, г. Тюмень, ул. Одесская, д. 54

Petrov Ivan M — MD, assistant-professor, chair of hospital of internal diseases and endocrinology module, State educational government-financed institution of higher professional education «Tyumen state medical academy». Contact information: petrovtokb@mail.ru; 625007, Tyumen, Odessa street, 54

Сидорова Евгения Андреевна — аспирант кафедры госпитальной терапии с курсом эндокринологии ГБОУ ВПО «Тюменская государственная медицинская академия». Контактная информация: 625007, г. Тюмень, ул. Одесская, д. 54 Sidorova Yevgeniya A — post-graduate student, chair of hospital course of internal diseases with endocrinology module, State educational government-financed institution of higher professional education «Tyumen state medical academy». Contact information: 625007, Tyumen, Odessa street, 54

 $^{^1}$ ГБОУ ВПО «Тюменская государственная медицинская академия»

² ФГБОУ ВПО «Тюменский государственный нефтегазовый университет»,

г. Тюмень, Российская Федерация

Гепатология РЖГТК ∘ 6, 2014

отмечено наличие НАЖБП в стадии стеатоза и у 18% в стадии неалкогольного стеатогепатита.

Результаты. У пациентов с МС в ассоциации с ранними нарушениями углеводного обмена фиброз печени в стадии F_1 по системе «METAVIR» регистрируется в 25%, F_2 — в 16,%, F_3 — в 13% и F_4 — в 1,5% случаев. По мере увеличения стадии фиброза отмечен прогрессивный рост содержания TNF- α (p=0,0265), IL-6 (p=0,0012) и эндотелина-1 (p=0,0137) на фоне снижения концентрации адипонектина (p=0,0026) и прироста диаметра плечевой артерии после компрессии (p=0,005).

Выводы. Наличие и степень выраженности фиброза печени у пациентов с МС в сочетании с ранними нарушениями углеводного обмена ассоциируется с ростом концентрации провоспалительных цитокинов, эндотелина-1 на фоне уменьшения содержания адипонектина и снижения способности эндотелия к вазодилатации.

Ключевые слова: фиброз печени, эндотелиальная дисфункция, метаболический синдром, ранние нарушения углеводного обмена.

Results. In patients with MS in association to early disorders of carbohydrate metabolism liver fibrosis at F_1 METAVIR stage was revealed in 25%, at F_2 — in 16%, at F_3 — in 13% and at F_4 — in 1,5% of all cases. Along with increase of fibrosis stage progressive elevation of TNF- α (p=0,0265), IL-6 (p=0,0012) and endothelin-1 (p=0,0137) contents on background of decrease of adiponectin concentration (p=0,0026) and gain of humeral artery diameter after compression (p=0,005) was marked.

Conclusions. Presence and severity of liver fibrosis at MS in combination to early disorders of carbohydrate metabolism are related to increase of proinflammatory cytokines, endothelin-1 concentration on a background of reduction of adiponectin contents and decrease of endothelium vasodilation capacity.

Key words: liver fibrosis, endothelial dysfunction, metabolic syndrome, early disorders of carbohydrate metabolism.

о данным крупного эпидемиологического исследования DIREG L 01903, проведенного в Российской Федерации в 2007 г., признаки неалкогольной жировой болезни печени (НАЖБП) отмечаются у 26,1% взрослого населения, обращающегося в поликлиники, при наличии прямой ассоциации данного заболевания с абдоминальным ожирением, дислипидемией и артериальной гипертензией [1]. Некоторые исследования свидетельствуют о наличии признаков НАЖБП у 75% лиц с избытком массы тела и практически у 100% пациентов с ожирением и метаболическим синдромом (МС) [2, 3]. По мнению В.Т. Ивашкина, тесная связь НАЖБП с избыточной массой тела дает основания рассматривать это заболевание как печеночный компонент МС [4].

С современных позиций патогенез НАЖБП при МС объясняется не только инсулинорезистентностью, но и формированием системного воспаления в организме [5, 6], что приводит к развитию эндотелиальной дисфункции (ЭД). Результаты исследований А.П. Щекотовой свидетельствуют о сходных проявлениях поражения эндотелия при желчнокаменной болезни, хронических вирусных гепатитах и у больных с очаговыми процессами в печени, а определение маркёров функционального состояния эндотелия, воспаления и фиброза может использоваться для оценки тяжести поражения гепатобилиарной системы [7].

Данные предпосылки, наряду с неоднозначной ролью содержания адипокинов в развитии ЭД и суммарного вклада в риск развития кардиоваскулярных заболеваний у пациентов с НАЖБП [8], определили вектор настоящей работы.

Цель исследования: у пациентов с НАЖБП в ассоциации с ранними нарушениями углеводного обмена провести комплексную оценку функционального состояния эндотелия с учетом содержания маркёров воспаления и некоторых адипокинов в зависимости от выраженности фиброза печени по данным эластометрии.

Материал и методы исследования

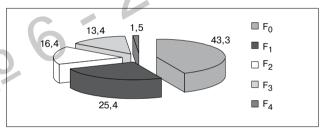
Обследовано 67 пациентов с MC (IDF 2005) в сочетании с ранними нарушениями углеводного обмена. Нарушенная гликемия натощак диагностировалась при концентрации глюкозы в плазме крови ≥5,6-6,1 ммоль/л и нарушения толерантности к глюкозе ≥7,8 и ≤11,1 ммоль/л через 2 ч после нагрузки глюкозой. Среди обследованных доля мужчин составила 28,4% (19/67), женщин -71,6% (48/67), медиана (интерквартильный размах) возраста 47,5 (42–49) года. Критерии исключения из исследования: перенесенные ранее вирусные гепатиты, токсические, лекарственные, врожденные метаболические заболевания печени; быстрое похудание, парентеральное питание более 2 нед, хронические заболевания желудочно-кишечного тракта с синдромом мальабсорбции и описторхозная инвазия. Работа выполнена в соответствии с этическим стандартам Комитета по экспериментам на человеке с соблюдением требований Хельсинской декларации и одобрено этическим комитетом ГБОУ ВПО «Тюменская государственная медицинская академия» Минздрава России. От каждого обследованного человека получено информированное согласие на использование материалов в научных исследованиях.

Медиана (Q_1 – Q_3) индекса массы тела пациентов с МС составила 34,6 (32,4–38,4) кг/м², значения окружности талии 1,07 (1,01–1,18) м, окружность бедер 0,99 (0,95–1,04) м и их соотношение — 1,08 (1,02–1,16) у.е. Медиана систолического и диастолического артериального давления 140 (135–150) мм рт. ст. и 95 (90–100) мм рт. ст. соответственно. Анализ уровня трансаминаз показал, что активность аспартатаминотрансферазы составила 38 (34–50) МЕ/л, аланинаминотрансферазы 42 (25–52,5) МЕ/л, щелочной фосфатазы 315 (257–387) МЕ/л и гамма-глутамилтранспептидазы 67 (39–75) МЕ/л.

Ультразвуковыми критериями стеатоза печени (Accuvix V20 Prestige) являлось более чем 10% содержание в ней триглицеридов относительно сухой массы в сочетании с дистальным затуханием эхосигнала, диффузной гиперэхогенностью паренхимы печени, увеличением ее эхогенности по сравнению с почками, нечеткостью сосудистого рисунка. Повышение активности трансаминаз более чем в 2 раза от уровня, рекомендованного для практически здоровых лиц рассматривалось нами как маркёр наличия неалкогольного стеатогепатита (НАСГ). Установлено, что при ассоциации МС с ранними нарушениями углеводного обмена признаки НАЖБП регистрируются у 100% обследованных, при этом у 71,6% (49/67) в стадии стеатоза, у оставшихся 28,4% (19/67) в стадии НАСГ.

Для определения концентрации инсулина, фактора некроза опухоли- α (TNF- α), интерлей-кина-6 (IL-6), лептина, адипонектина и эндомелина-1 (ET-1) в плазме крови использовался метод твердофазного иммуноферментного анализа («Multiscan» ThermoLabSystems). Для изучения метаболизма оксида азота исследовали концентрацию стабильных метаболитов оксида азота (NO₂ и NO₃) в сыворотке крови спектрофотометрическим методом с применением реактива Гриса [9].

Эндотелий-зависимая вазодилатация оценивалась по параметрам исследования плечевой артерии (Acuson «Sequoia-512», USA) с помощью линейного датчика с частотой 7 МГц, направление плоскости сканирования было строго перпендикулярно продольной оси сосуда и сосудистой стенке, за нормальные значения принимали показатели прироста дилатации артерии на 10% и более.


Эластометрия (Fibroscan, Echosens, Франция), морфологическая оценка стадии фиброза проводились по системе «METAVIR»: F_0 — отсутствие фиброза, F_1 — портальный фиброз без септ, F_2 — портальный фиброз в сочетании с единичными септами, F_3 — портальный фиброз в сочетании с множественными септами, без ложных долек, F_4 — цирроз печени.

Статистическая обработка материалов исследования осуществлялась с использованием программы Statistica 10. Непрерывные переменные

представлены в виде медианы и значений 25-75 перцентиля — Ме (Q_1-Q_3) . Для определения статистической значимости различий по количественным признакам использовался критерий Краскела—Уоллиса, по качественным признакам — критерий χ^2 . Критический уровень значимости при проверке статистических гипотез принимался равным 0,05. Для исследования зависимостей между переменными применялся коэффициент ранговой корреляции Спирмена.

Результаты исследования

Представленные на рисунке данные свидетельствуют, что несмотря на наличие у всех обследованных ультразвуковых признаков НАЖБП, по результатам эластометрии у 43,3% (29/67) отсутствовали признаки фиброза печени. Портальный фиброз без септ зарегистрирован у четверти больных (25,4%), в сочетании с единичными септами (что по системе «МЕТАVIR» соответствует стадии F_2) — у 16,4% (11/67), портальный фиброз в сочетании с множественными септами, без ложных долек и цирроз печени отмечены у 13,4% (9/67) и 1,5% (1/67) соответственно.

Выраженность фиброза у больных с метаболическим синдромом и ранними нарушениями углеводного обмена по системе «METAVIR», %

Для проведения сравнительного анализа выраженности метаболических нарушений и состояния функции эндотелия в зависимости от стадии фиброза обследуемые были разделены на три группы. В первую группу вошли 29 пациентов без признаков фиброза печени (F_0), во вторую — 28 пациентов со стадией фиброза F_{1-2} и в третью — 10 пациентов с выраженными фибротическими изменениями F_{3-4} . Сравнительный анализ таких параметров углеводного обмена, как концентрация инсулина и индекс инсулинорезистентности (HOMA IR) не показал значимых различий между группами, уровень значимости критерия Краскела—Уоллиса составил p=0,0897 и p=0,0645 соответственно (табл. 1).

При исследовании концентрации провоспалительных цитокинов отмечен прогрессивный рост содержания TNF- α и IL-6 по мере увеличения стадии фиброза печени (p=0,0265 и p=0,0012). Так, у пациентов со стадией фиброза F_{3-4} содержание данных цитокинов составило 401,3 (353,1–416,4)

Гепатология РЖГГК ∘ 6, 2014

Таблица 1 Концентрация инсулина, провоспалительных цитокинов и адипокинов у пациентов с НАЖБП в ассоциации с ранними нарушениями углеводного обмена в зависимости от стадии фиброза печени

Показатель	Группа			IZ XX 4
	первая (F ₀), <i>n</i> =29	вторая (F_{1-2}), $n=28$	третья (F_{3-4}), $n=10$	K–W test
Инсулин, нг/мл	20,3 (15,1–26,2)	22,9 (17,7–23,6)	21,6 (18,2–25,1)	p=0,0897
Индекс HOMA IR	5,7 (3,7–6,9)	5,7 (3,6–6,2)	5,8 (4,0-6,4)	p=0,0645
TNF-а, пг/мл	296,3 (121,1–321,3)	328,5 (174,7–396,7)	401,3 (353,1-416,4)	p=0,0265
IL-6, пг/мл	5,4 (4,5–7,1)	6,75 (2,4–9,5)	16,4 (8,6–19,6)	p=0,0012
Лептин, нг/мл	21,2 (13,9–25,8)	20,4 (13,4–26,5)	22,6 (16,4–28,2)	p=0,6090
Адипонектин, нг/мл	9,0 (7,8–11,9)	8,1 (7,2–10,4)	7,5 (6,9–8,4)	p=0,0026

Примечание. р — уровень значимости критерия Краскела—Уоллиса (Kruskal—Wallis test, K—W test).

Таблица 2 Концентрация эндотелина-1, метаболитов оксида азота и параметры эндотелий-зависимой вазодилатации у пациентов с НАЖБП в ассоциации с ранними нарушениями углеводного обмена в зависимости от стадии фиброза печени ▲

П	Группа			IZ XXZ 44
Показатель	первая (F_0), $n=29$	вторая (F_{1-2}), $n=28$	третья (F_{3-4}) , $n=10$	K–W test
ET-1, нг/мл	1,5 (1,0-2,1)	2,1 (1,4–2,8)	3,1 (2,0-4,3)	p=0,0137
$NO_2 + NO_3$, мкмоль/л Исходно RI, y.e.	32,4 (21,5–36,5) 0,8 (0,7–0,9)	29,4 (21,9–34,7) 0,8 (0,7–0,9)	31,4 (25,1–33,9) 0,8 (0,7–0,9)	p=0,0848 p=0,245
RI после компрессии, у.е. Исходно S/D, у.е.	0,7 (0,6–0,8) 5,6 (4,3–6,9)	0,7 (0,6–0,8) 5,7 (4,1–6,6)	0,7 (0,6–0,8) 5,4 (4,1–6,8)	p=0,0302 p=0,2075
S/D после компрессии, у. е. Прирост диаметра, %	9,9 (6,2–12,1) 6,9 (5,7–7,9)	10,1 (6,2–12,1) 5,9 (5,0–7,2)	12,1 (6,2–12,1) 5,7 (4,9–6,1)	p=0,0128 p=0,0050

Примечание. То же, что в табл. 1.

и 16,4 (8,6–19,6) пг/мл, при этом медиана концентрации IL-6 была практически в 3 раза выше аналогичного параметра у пациентов без эластометрических признаков фиброза. На фоне этого содержание лептина значимо по группам не различалось (p=0,6090), а адипонектина было обратно пропорционально выраженности фиброза (p=0,0026). Так, у пациентов третьей группы с F_{3-4} медиана (Q_1 – Q_3) его концентрации составила 7,5 (6,9–8,4) нг/мл. По уровню ЕТ-1 (табл. 2) также установлены значимые различия между группами (p=0,0137), тогда как по содержанию метаболитов оксида азота (NO₂ + NO₃) аналогичной тенденции не получено (p=0,0848).

Сравнительный анализ диаметра (D) плечевой артерии и линейных параметров скорости (S) кровотока в пробе с компрессией (см. табл. 2) показал, что при отсутствии исходных различий (p=0,245) в индексе резистентности сосудов (RI) после компрессии отмечены более высокие значения данного параметра в группах с фиброзом печени (p=0,0302), аналогичные особенности фиксирова-

лись и по абсолютным показателям соотношения скорости к диаметру (S/D). После компрессии значения указанных выше параметров возросли практически в 2 раза, достоверно различаясь по группам (p=0,0128), хотя исходно, независимо от выраженности фиброза, имелись сопоставимые уровни исследуемого параметра (p=0,2075).

Медиана прироста диаметра плечевой артерии у пациентов первой группы составила 6.9 (5.7-7.9)%, во второй группе 5.9 (5.0-7.2)%, в третьей группе 5.7 (4.9-6.1)%, различия между группами статистически значимы (p=0.005).

Обсуждение результатов исследования

Исходя из данных литературы фиброз, формирующийся в печени, имеет отчетливую тенденцию к прогрессированию, и терминальная стадия НАСГ составляет 30—75% всех случаев криптогенного цирроза печени, кроме этого, примерно в 7% цирроз трансформируется в гепатоцеллюлярную

карциному [10]. Однако значимость НАЖБП обусловлена наличием тесных интеграционных взаимосвязей с генезом атеросклеротических поражений сосудистого русла [11, 12]. Вовлекаясь в патологический процесс, печень не только становится органом-мишенью, но и сама усиливает метаболические нарушения при инсулинорезистентности [13].

Самым точным методом диагностики наличия и стадии НАЖБП считается морфологическое исследование биоптата, но вследствие объективных причин использование этого метода в широкой клинической практике крайне затруднительно. Вместе с тем сывороточные маркёры воспаления и фиброза, объединенные в ряд различных диагностических алгоритмов, требуют независимой проверки и сравнения [14], тогда как эластометрия показывает неплохие результаты в плане определения выраженности фиброза печени при НАЖБП.

В настоящее время, эндотелиальная функция рассматривается как интегральный аспект синдрома инсулинорезистентности [15, 16], а факторы, воздействующие на эндотелий, за счет увеличения реактивности сосудов способны повышать риск кардиоваскулярных осложнений. Наиболее значимыми факторами риска развития активации эндотелия являются гиперхолестеринемия, артериальная гипертензия, инсулинорезистентность и гиперинсулинемия, а также нарушение баланса оксида азота и активных форм кислорода [17—19].

Полученные нами данные свидетельствуют, что у большинства пациентов с НАЖБП на фоне МС в ассоциации с ранними нарушениями углеводного обмена регистрируется снижение эндотелий-зависимой вазодилатации (прирост диаметра <10%), что указывает на наличие эндотелиальной дисфункции. Нормальные значения прироста диаметра плечевой артерии регистрировались у 11,9% (8/67) обследованных больных, при этом в группе без фиброза печени доля таких больных составила 17,3% (5/29), во второй группе 10,7% (3/28), в третьей группе прирост диаметра на 10% и более не отмечен ни у одного пациента.

Одним из методов оценки выраженности ЭД является определение содержания в крови факторов, повреждающих эндотелий, уровень которых коррелирует с эндотелиальной дисфункцией. По результатам нашего исследования установлено, что наличие и степень выраженности фиброза печени ассоциируется с ростом концентрации таких маркёров воспаления, как TNF- α и IL-6. Интересно отметить, что влияние IL-6 на

Список литературы

1. Елисеева Л.Н., Будашова Т.М., Долганова Т.Ю., Бочарникова М.И. Особенности выявления неалкогольной жировой болезни печени в клинической практике. Рос мед вести 2009; 14(1):31-6.

выраженность ЭД нельзя считать окончательно установленным. Согласно некоторым данным, во время физических упражнений происходит активация синтеза и высвобождения IL-6 в мышечной ткани, что повышает чувствительность к инсулину на ранних этапах восстановления [20].

Установлено, что лептин вызывает ЭД, усиливая эффекты ангиотензина II на уровень артериального давления. Указанные эффекты реализуются путем активации симпатической нервной системы и играют ведущую роль в повышении жесткости сосудов и развитии гипертензии у пациентов с ожирением [21]. На фоне этого адипонектин и грелин оказывают благотворное влияние на эндотелиальные клетки [22], в частности адипонектин стимулирует фосфорилирование аденозин монофосфата, оказывая прямое воздействие на сосудистый эндотелий, уменьшая воспалительный ответ на механические повреждения [23].

По мнению ведущих российских ученых, по содержанию адипонектина можно прогнозировать развитие стеатоза и тяжесть НАЖБП: сниженный уровень адипонектина при инсулинорезистентности сопряжен с «провоспалительным статусом» [15]. При исследовании взаимосвязи адипокинов с состоянием эндотелий-зависимой вазодилатации выявлено наличие обратной ассоциации с концентрацией лептина (r=-0.24, p=0.03) и прямой с содержанием адипонектина (r=0.64, p=0.001).

Выводы

НАЖБП регистрируется у 100% пациентов с МС в ассоциации с ранними нарушениями углеводного обмена, в 72% случаев ее структура представлена жировым гепатозом и в 18% НАСГ, при этом эластометрические признаки фиброза печени отмечаются у 57% пациентов данной группы.

Степень выраженности фиброза у пациентов с МС в сочетании с ранними нарушениями углеводного обмена взаимосвязана с ростом концентрации провоспалительных цитокинов (TNF- α , IL-6), эндотелина-1 и уменьшением содержания адипонектина на фоне снижения способности эндотелия к вазодилатации.

При наличии нарушений углеводного обмена у пациентов с МС и НАЖБП рекомендуется дополнительно проводить эластометрию для выявления фиброза печени и исследование уровня провоспалительных цитокинов как факторов формирования высокого сердечно-сосудистого риска.

- Yeliseyeva L.N., Budashova T.M., Dolganova T.Yu., Bocharnikova M.I. Detection of non-alcoholic fatty liver disease in clinical practice. Ros med vesti 2009; 14 (1):31-6.
- Чеснокова Л.В., Петров И.М., Трошина И.А., Медведева И.В. Содержание провоспалительных цитокинов в зависимости от стадии фиброза у больных

- с метаболическим синдромом и неалкогольной жировой болезнью печени. Клин мед 2013; 12(91):34-8.
- Chesnokova L.V., Petrov I.M., Troshina I.A., Medvedeva I.V. Contents of proinflammatory cytokines in relation to fibrosis stage at metabolic syndrome and nonalcoholic fatty liver disease. Klin med 2013; 12(91):34-8.
- 3. Stefan N., Kantartzis K., Häring H. Causes and metabolic consequences of fatty liver. Endocr Rev 2008; 29(7):939-60.
- 4. Ивашкин В.Т., Драпкина О.М., Шульпекова Ю.О. Диагностика и лечение неалкогольной жировой болезни печени. Рос мед вести 2009; 3(14):1-12.
- Ivashkin V.T., Drapkina O.M., Shulpekova Yu.O. Diagnostics and treatment of non-alcoholic fatty liver disease. Ros med vesti 2009; 3(14):1-12.
- 5. Saltiel A.R., Pessin J.E. Insulin signaling pathways in time and space. Trends Cell Biol 2002; 12:65-71.
- 6. Dandona P., Aljada A., Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 2004; 25:4-7.
- 7. Щекотова А.П., Котельникова Л.П., Мугатаров И.Н., Федачук Н.Н. Эндотелиальная дисфункция, воспаление и фиброз при гепатобилиарной патологии. Фундаментальные исследования 2013; 5(2):451-5.
- 7. Schekotova A.P., Kotelnikova L.P., Mugatarov I.N., Fedachuk N.N. Endothelial dysfunction, inflammation and fibrosis at hepatobiliary pathology. Fundamental nye issledovaniya 2013; 5(2):451-5.
- Kyosuke Š., Hidetaka N. Chapter five Screening for adiponectin secretion regulators. Vitam Horm 2012; 90:125-41.
- 9. *Орлова Е.А.* Анализ нитритов и нитратов в ткани при экспериментальной острой почечной недостаточности. Укр журн экстремальной медицины 2002; 1(3):79-82.
- Orlova E.A. Tissue nitrites and nitrates at acute experimental renal failure. Ukr zhurn ekstremalnoy meditsiny 2002; 1(3):79-82.
- Ratziu V., Bellentani S., Cortez-Pinto H., Day C., Marchesini G. A position statement on NAFLD/NASH based on the EASL 2009 special conference. J Hepatol 2010; 53(2):372-84.
- D'Aiuto F., Parkar M., Nibali L., Suvan J., Lessem J., Tonetti M.S. Periodontal infections cause changes in traditional and novel cardiovascular risk factors: results from a randomized controlled clinical trial. Am Heart J 2006; 151:977-84.

- Li X., Tse H.F., Jin L.J. Novel endothelial biomarkers: Implications for periodontal disease and CVDJDR. Diabet Med 2011; 90:1062-9.
- 13. *Ивашкин В.Т.*, *Маевская М.В.* Липотоксичность и метаболические нарушения при ожирении. Рос журн гастроэнтерол гепатол колопроктол 2010; 20(1):4-13.
- 14. *Hink U.*, *Huige L.*, *Hanke M.*, *Mathias O.*, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 2001; 88:14.
- 15. Deanfield J.E., Halcox J.P., Rabelink T.J. Endothelial function and dysfunction. Circulation 2007; 115:1285-95.
- Fisman E.Z., Tenenbaum A. The ubiquitous interleukin-6: a time for reappraisal. Cardiovasc Diabetol 2010; 9:62.
- 17. Wang J., Wang H., Luo W., Guo C., et al. Leptin-induced endothelial dysfunction is mediated by sympathetic nervous system activity. J Am Heart Assoc 2013; 2:e000299.
- Fisman E.Z., Tenenbaum A. Adiponectin: A manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease? Cardiovasc Diabetol 2014; 13(1):103.
- 19. *Toda N.*, *Okamura T.* Obesity impairs vasodilatation and blood flow increase mediated by endothelial nitric oxide: an overview. J Clin Pharmacol 2013; 53(12):1228-39.
- 20. Sanyal A.J., Banas C., Sargeant C., et al. Similarities and differences in outcomes of cirrhosis due to nonalcoholic steatohepatitis and hepatitis C. Hepatology 2006; 43:682-9.
- 21. *Кособян Е.П.*, *Смирнова Q.М*. Современные концепции патогенеза неалкогольной жировой болезни печени. Сахарный диабет. 2010; 1:55-64.
- Kosobyan Ye.P., Smirnova O.M. Modern concepts of non-alcoholic fatty liver disease pathogenesis. Sakharny diabet. 2010: 1:55-64.
- diabet. 2010; 1:55-64.

 22. Targher G., Marra F., Marchesini G. Increased risk of cardiovascular disease in non-alcoholic fatty liver disease: causal effect or epiphenomenon? Diabetologia 2008; 51:1947-53.
- 23. Ройтберг Г.Е., Шархун О.О., Платонова О.Е., Ушакова Т.И. Неалкогольная жировая болезнь печени как фактор риска атеросклероза. Эксп клин гастроэнтерол 2010; 7:20-4.
- 23. Roytberg G.E., Sharkhun O.O., Platonova O.E., Ushakova T.I. Non-alcoholic fatty liver disease as a risk factor of atherosclerosis. Eksp klin gastroenterol 2010; 7:20-4.