УДК 616.36-002.1

Острый гепатит неуточненной этиологии

Е.В. Цыганова¹, О.О. Знойко¹, Н.Д. Ющук¹, К.Р. Дудина¹, М.Г. Исагулянц², Н.В. Петракова², Т.В. Петрова³, М.И. Михайлов⁴

(¹Московский государственный медико-стоматологический университет, кафедра инфекционных болезней и эпидемиологии;

Acute hepatitis of non-specified etiology

Ye.V. Tsyganova, O.O. Znoyko, N.D. Yushchuk, K.R. Dudina, M.G. Isagulyants, N.V. Petrakova, T.V. Petrova, M.I. Mikhaylov

Цель исследования. Оценить патогенетическое и диагностическое значение обнаружения компонентов гепатотропных вирусов (ДНК, РНК, антигенов) и противовирусного иммунного ответа при остром гепатите неуточненной этиологии методами иммуноферментного анализа (ИФА), полимеразной цепной реакции (ПЦР) и Т-клеточной пролиферации лимфоцитов в ответ на стимуляцию антигенами HCV.

Материал и методы. В исследование были включены больные *острым гепатитом неуточненной этиологии* – ОГНЭ (n=42), пациенты с острым гепатитом С (n=33) и острым гепатитом В (n=36), которые составляли группы сравнения, а также контрольная группа здоровых лиц (n=15). Обследование паци-

Aim of investigation. To estimate pathogenic and diagnostic value of detection of hepatotropic viruses components (DNA, RNA, antigens) and antiviral immune response at acute hepatitis of non-specified etiology by the methods of *enzyme-linked immunoassay* (EIA), *polymerase chain reaction* (PCR) and T-cellular lymphocytes proliferation in response to HCV antigens stimulation.

Methods. Overall 42 patients with acute hepatitis of not specified etiology (AHNSE) were included in original study. Thirty three patients with acute hepatitis C and 36 patients with acute hepatitis B made groups of comparison, control group included 15 healthy persons. Investigation of patients with acute hepatitis of non-specified etiology included clinical, epidemiologic,

Цыганова Елена Валерьевна — старший лаборант кафедры инфекционных болезней и эпидемиологии, ГОУ ВПО «Московский государственный медико-стоматологический университет Федерального агентства по здравоохранению и социальному развитию» (МГМСУ). Контактная информация для переписки: TsyganovaElena@yandex.ru **Знойко Ольга Олеговна** — доктор медицинских наук, профессор кафедры инфекционных болезней и эпидемиологии ГОУ ВПО МГМСУ

Ющук Николай Дмитриевич – академик РАМН, доктор медицинских наук, профессор кафедры инфекционных болезней и эпидемиологии ГОУ ВПО МГМСУ

Дудина Кристина Романовна — кандидат медицинских наук, ассистент кафедры инфекционных болезней и эпидемиологии ГОУ ВПО МГМСУ

Исагулянц Мария Георгиевна — кандидат химических наук, ведущий научный сотрудник группы химии вирусных нуклеиновых кислот и белков ГУ «Институт вирусологии им. Д.И. Ивановского РАМН». Контактная информация для переписки: Москва, ул. Гамалеи, 16

Петракова Наталия Васильевна — кандидат биологических наук, старший научный сотрудник группы химии вирусных нуклеиновых кислот и белков ГУ «Институт вирусологии им. Д.И. Ивановского РАМН». Контактная информация для переписки: Москва, ул. Гамалеи, 16

Петрова Татьяна Викторовна — кандидат биологических наук, заведующая отделом ПЦР-исследований многопрофильной диагностической лаборатории, Государственный научный центр «Институт иммунологии Федерального медикобиологического агентства России». Контактная информация для переписки: Москва, Каширское ш., 24, корп. 2 **Михайлов Михаил Иванович** — доктор медицинских наук, профессор, директор Института полиомиелита и вирусных энцефалитов им. М.П. Чумакова РАМН (ИПВЭ). Контактная информация для переписки: 142782, Московская область, Ленинский район, 27 км. Киевского шоссе, ИПВЭ

 $^{^2}$ ГУ Институт вирусологии им Д.И. Ивановского РАМН, Москва;

³НПО «ДНК-Технология», Москва;

⁴Институт полиомиелита и вирусных энцефалитов им. М.П. Чумакова РАМН, Московская обл.)

ентов с острым гепатитом неуточненной этиологии включало клинико-эпидемиологический, стандартный лабораторный, серологический методы; молекулярно-биологический метод (РНК вирусов гепатитов А, С, Е, G; ДНК вирусов гепатита В, TTV, CMV, EBV, HHV 1, 2, 6 и 8-го типов, PV B-19, NV-f - качественный анализ); метод иммунофлюоресценции (определение антимитохондриальных и антинуклеарных антител); иммунологические методы (лабораторные диагностические) - раздельное определение в сыворотке крови методом ИФА специфических антител на спектр индивидуальных антигенов HCV, включающих структурные и неструктурные белки и пептиды из их состава, представляющие весь полипротеин HCV (всего 38 антигенов - 34 антигена HCV и 4 контрольных антигена); исследование Т-клеточного иммунного ответа на антигены HCV методом бласттрансформации лимфоцитов в ответ на стимуляцию антигенами HCV с количественной оценкой секреции цитокинов; инструментальный метод - ультразвуковое исследование органов брюшной полости.

Выводы. В результате исследования в структуре больных острым гепатитом, не выезжавших в эндемичные регионы, выявлен вирусный гепатит Е – в 4,8% случаев с использованием ИФА, в том числе в 2,4% одновременно методами ИФА и ПЦР. Можно предполагать, что доля острой НСV-инфекции с атипичным серологическим профилем (по данным коммерческих тест-систем) составляет у больных ОГНЭ 17%, а при условии введения мультипараметрического диагностического критерия, включающего 6 параметров, – 43,5%.

Ключевые слова: острый гепатит неуточненной этиологии, вирусный гепатит, иммунный ответ, цитокины.

routine laboratory, serological methods; molecular biological method (RNA of hepatitis A, C, E, G viruses; DNA of hepatitis B virus, TTV, CMV, EBV, HHV of 1, 2, 6 and 8 types, PV B-19, NV-f – qualitative analysis); method of immunofluorescence (assessment of antimitochondrial and antinuclear antibodies); immunologic methods (laboratory diagnostic methods) - independent assessment of specific antibodies for individual HCV antigens spectrum, including structural and unstructural proteins and compound peptides, representing the whole HCV polyprotein (overall 38 antigens: 34 HCV antigens and 4 control antigens) in blood serum by EIA method; investigation of T-cellular immune response to HCV antigens by blast-cell lymphocytes transformation method under stimulation by HCV antigens with quantitative evaluation of cytokine secretion; instrumental method - ultrasound investigation of abdominal organs.

Conclusions. As a result of the study within the group of patients with acute hepatitis, that never visited precinctive regions, viral hepatitis E was revealed by EIA in 4,8% of cases, including 2,4% when it was detected both by EIA and PCR. It is possible to assume, that the portion of acute HCV-infection with atypical serological profile (according to commercial tests-systems data) reaches 17% of AHNSE patients, and at application of multiparametric diagnostic criterion, including 6 parameters, – 43,5%.

Key words: acute hepatitis of non-specified etiology, viral hepatitis, immune response, cytokines.

ирусные гепатиты традиционно являются одной из наиболее острых проблем здравоохранения. В качестве этиологических факторов вирусных гепатитов рассматриваются как минимум 8 агентов (HAV, HBV, HDV, HCV, HEV, HGV, TTV и SENV, NV-f), 6 из которых передаются парентеральным путем. Однако до настоящего времени роль отдельных вирусов (HGV, TTV и SENV, NV-f) и их сочетаний в развитии поражения печени не вполне ясна и требует дальнейшего уточнения.

Особое место в практике клиницистов занимают острые гепатиты неуточненной этиологии (ОГНЭ). Известно, что в Российской Федерации их удельный вес последовательно увеличивается — с 1—2,2% в 1993—1997 гг. до 4,1—4,2% в 2004—2005 гг. и 5,7—6,7% в 2006—2008 гг. [2]. Некоторая доля больных (15—20%), перенесших явно посттрансфузионный гепатит, остается серонегативной в отношении всех маркёров известных вирусных гепатитов человека [1], и даже при использовании самых современных методов диагностики в ряде случаев невозможно установить этиологию гепатита.

С точки зрения интересов как фундаментальной медицины, так и практического здравоохранения углубленное обследование больных ОГНЭ крайне актуально в аспекте детального изучения иммунного ответа на антигены вирусов — кандидатов в этиологические агенты гепатитов, а также в плане клинического значения выявления генетического материала данных возбудителей в крови больных. Результаты подобных исследований, возможно, приведут к внедрению в практику новых подходов при обследовании больных.

В исследованиях последнего десятилетия, посвященных изучению HCV-инфекции, многими авторами демонстрируется, что при наличии PHK HCV в крови нередко отсутствуют антитела к HCV [3, 5, 7]. В ряде работ убедительно показано, что в остром периоде заболевания предиктором реконвалесценции от гепатита С является мощный Т-клеточный ответ на антигены HCV [4, 10–12], который может регистрироваться при отсутствии в крови больных как серологических маркёров HCV, так и PHK HCV [6, 8].

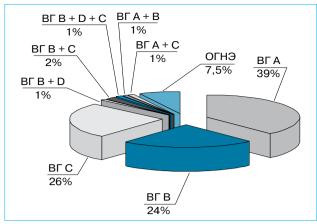


Рис. 1. Этиологическая структура острых гепатитов по данным ИКБ № 1 в 2005-2006 гг. (n=1392)

В настоящее время регистрируемый специфическими методами Т-клеточный ответ на антигены HCV в отсутствии антител к вирусу гепатита С рассматривается, с одной стороны, в качестве доказательства предшествующей встречи с HCV, а с другой, в качестве мощного защитного фактора, предотвращающего возможность повторного инфицирования человека. Это продемонстрировано, в частности, на лицах, длительно употребляющих внутривенно психоактивные вещества при отсутствии у них анти-НСУ и РНК НСУ в крови, но наличии Т-клеточного ответа [5], а также на группе работников клинической лаборатории, контактирующих с кровью больных, у которых в отсутствии РНК НСУ и анти-НСУ регистрируется Т-клеточный ответ, причем более мощный, чем у больных хроническим гепатитом С [9].

Изучение Т-клеточного ответа на стимуляцию антигенами HCV лимфоцитов крови у больных ОГНЭ ранее не проводилось и в настоящем исследовании это сделано впервые. Кроме того, HCV-инфекция с атипичным серологическим профилем впервые рассматривается в качестве этиологического фактора ОГНЭ.

Цель работы — оценить патогенетическое и диагностическое значение обнаружения компонентов гепатотропных вирусов (ДНК, РНК, антигенов) и противовирусного иммунного ответа при остром гепатите неуточненной этиологии методами иммуноферментного анализа (ИФА), полимеразной цепной реакции (ПЦР) и Т-клеточной пролиферации лимфоцитов в ответ на стимуляцию антигенами НСV.

Материал и методы исследования

В течение 2005—2006 гг. в Инфекционной клинической больнице \mathbb{N}_{2} 1 г. Москвы были обследованы 1392 больных острым гепатитом. Этиологическая структура острых гепатитов представлена на рис. 1.

В исследование были включены: больные острым гепатитом неуточненной этиологии (n=42), пациенты с острым гепатитом С (n=33) и острым гепатитом В (n=36), а также здоровые лица, составившие группу контроля (n=15). Группа больных ОГНЭ была сформирована с учетом критериев включения и исключения. Критерии включения: клиническая картина желтушной формы острого гепатита, более чем 10-кратное повышение активности АлАТ, отсутствие маркёров острых вирусных гепатитов А, В, С при первичном обследовании, возможность динамического наблюдения за пациентом в течение не менее 6 мес, письменное информированное согласие больного на участие в исследовании. Критерии исключения: тяжелые соматические и психические заболевания, в том числе онкологическая и аутоиммунная патология по данным анамнеза, признаки острой и хронической алкогольной интоксикации, наркозависимость, химиотерапия и системная гормональная терапия в течение 6 мес перед заболеванием, наличие ВИЧ-инфекции и сифилиса. В группу контроля вошли здоровые лица с отсутствием маркёров вирусных гепатитов А, В, С по данным коммерческих тест-систем.

Обследование пациентов с острым гепатитом неуточненной этиологии осуществлялось по следующей схеме: в первые 10 дней желтушного периода, через 1, 3, 6 и 12 мес после выписки из стационара. В каждом образце крови определяли биохимические показатели, HBsAg и анти-HCV методом ИФА. Трижды (в первые 10 дней желтушного периода и через 3 или 6 мес) проводилось исследование на наличие нуклеиновых кислот гепатотропных вирусов методом ПЦР, определение антител к некоторым гепатотропным вирусам методом ИФА. В качестве основных применялись: метод клинико-эпидемиологического обследования пациентов (сбор анамнеза, оценка состояния и жалоб, физикальный осмотр); стандартный лабораторный метод (общеклинический и биохимический анализы крови); серологический метод (определение маркёров вирусных гепатитов A, B, C, D, E, антител к EBV, PV B-19, вирусу клещевого энцефалита, вирусу лихорадки Западного Нила, вирусу лихорадки Денге, вирусу Крым-Конго геморрагической лихорадки методом ИФА); молекулярно-биологический метод (РНК вирусов гепатитов А, С, Е, G; ДНК вирусов гепатита B, TTV, CMV, EBV, HHV 1, 2, 6 и 8-го типов, PV B-19, NV-f — качественный анализ); метод иммунофлюоресценции (определение антимитохондриальных и антинуклеарных антител); иммунологические (лабораторные диагностические) методы – раздельное определение в сыворотке крови методом ИФА специфических антител на спектр индивидуальных антигенов HCV, включающий структурные и неструктурные белки и пептиды из их состава, представляющие весь

Таблица 1

Лабораторные показатели больных острым гепатитом неуточненной этиологии в остром периоде (n=42)

Показатель	Диапазон колебаний	Среднее значение
АлАТ, мкмоль/(мин·л)	603-5242	1809±76
AcAT, мкмоль/(мин·л)	97-4193	1369±94
Общий билирубин, мкмоль/л	64–408	152±27
ЩФ, мкмоль/(мин∙л)	149-528	204±28
γ-ГТП, мкмоль/(мин·л)	119-801	322±36
Протромбиновый индекс	96–109	99±7
Общий белок	67–86	76±12
Количество эритроцитов, ×10 ⁶ /мм ³	3,96-5,02	$5,0\pm0,1$
Количество лейкоцитов, ×10 ³ /мм ³	5,6–12,3	6,75±0,5
Количество тромбоцитов, $\times 10^3/$ мм 3	192—341	198,9±14,9
Гемоглобин, г/л	121-176	124,7±9,3

полипротеин HCV (всего 38 антигенов — 34 антигена HCV и 4 контрольных антигена)*; исследование Т-клеточного иммунного ответа на антигены HCV методом бласттрансформации лимфоцитов в ответ на стимуляцию антигенами HCV** с количественной оценкой секреции цитокинов; инструментальный метод — ультразвуковое исследование органов брюшной полости.

Результаты исследования и их обсуждение

В группе пациентов с острым гепатитом неуточненной этиологии (n=42) соотношение мужчины/женщины было 15/27. Преобладали лица в возрасте 40—59 лет — 19 человек (45,2%), в возрасте 15—40 лет было 12 (28,6%) и в возрастной группе 60 лет и старше — 11 (26,5%).

Больные ОГНЭ поступали в стационар от 3-го до 18-го дня болезни (в среднем на 7,4±0,3 день),

от 1-го до 9-го дня желтухи (в среднем на 2,8±0,2 день). У 29 (69%) пациентов продолжительность преджелтушного периода составила 4,5±0,4 дня (от 1 до 14 дней), у 13 (31%) он отсутствовал. Длительность желтушного периода составила 13,8±0,7 дня. В продромальном периоде преобладали диспептический и интоксикационный синдромы. В желтушном периоде интенсивность симптомов уменьшалась.

Из анамнеза больных известно, что у 74% из них (n=31) проводились парентеральные вмешательства в течение 6 мес до возникновения первых симптомов заболевания. Все пациенты отрицали употребление алкоголя в количестве более 30 г в сутки (в пересчете на этанол) и психоактивных веществ. На прием различных лекарственных препаратов и биологически активных добавок (БАД) на протяжении 6 мес до развития симптомов заболевания указывали 28,6% больных (n=12). Препараты с возможным гепатотоксичным действием (антимикробные, противопротозойные и нестероидные противовоспалительные средства – НПВС) применяли 3 пациента в течение не более 2 дней в продромальном периоде. Среди применяемых антимикробных и противопротозойных препаратов были названы ципрофлоксацин и метронидазол, а среди НПВС парацетамол. В группу биологически активных добавок входили: капилар (дигидрокверцетин) и флоравит (БАД, содержащая фосфолипиды, антиоксиданты, эссенциальные полиеновые кислоты, ферменты, полисахариды, микроэлементы, витамины), а также концентрированный настой чистотела.

Средний койко-день составил $15\pm4,3$ дня (от 6 до 22). Средние показатели активности AcAT и AлAT в крови у больных ОГНЭ в остром периоде составили 1369 ± 94 (97—4193) и 1809 ± 76 (603—5242) мкмоль/(мин \cdot л) соответственно, средние

^{*} Белки нуклеокапсида/соге HCV, оболочки Е1 и Е2, неструктурные белки NS3, NS4, NS5A и NS5B. Пептиды представляли участки полипротеина HCV (в аминокислотиных остатках — ак): 774—796 и 802—821 HCV 1а и 1b генотипов; 1—20, 13—33, 34—56, 63—80, 67—81, 76—90, 106—126, 129—145, 140—160, 155—177 белка нуклеокапсида/соге; 1030—1058¹, 1073—1097², 1098—1132³, 1157—1178⁴, 1184—1218⁵, 1227—1252⁶, 1241—1280⁻, 1287—1313˚, 1304—1330˚, 1349—1379¹⁰, 1382—1415¹¹, 1438—1471¹², 1473—1497¹³, 1482—1510¹⁴, 1515—1546⁵, 1544—1579¹⁶, 1584—1619¹⁻, 1632—1657¹⁶ белка NS3 HCV генотипа 1b и консенсусные пептиды HVR-N и HVR-С, представляющие гипервариабельную петлю 1 белка оболочки Е2).

^{**} Для стимуляции лимфоцитов использовали смеси пептидов (пулы): соге HCV пул № 1, представляющий пептиды, перекрывающие участок ак 1—56; № 2 — ак 63—126, № 3 — ак 129—177; NS3 пул № 1, представляющий пептиды, перекрывающие участок ак 1030—1132, №2 — ак 1157—1218, № 3 — 1227—1313, № 4 — 1304—1415, № 5 — 1438—1510, № 6 — 1515—1579 и № 7 — 1584—1657, а также индивидуальные белковые антигены: соге HCV, NS3, NS4, NS5A и NS5B.

значения показателей γ -ГТП и ЩФ -204 ± 28 (149—528) и 322 ±36 (119—801) мкмоль/(мин \cdot л), билирубина -152 ± 27 (64—408) мкмоль/л. Параметры клинического анализа крови были в пределах нормы (табл. 1).

В желтушном периоде у 4 из 42 пациентов выявлена РНК HCV (9,5%), у 1 (2,4%) — РНК HAV, при повторном обследовании этих пациентов на маркёры вирусных гепатитов методом ИФА в стационаре у 4 были обнаружены анти-HCV и у 1 — анти-HAV IgM.

У 1 (2,4%) больного в сыворотке крови определялась РНК НGV, у 1 (2,4%) — ДНК ННV 6-го типа, сочетание РНК НEV и ДНК EBV выявлено у 1 (2,4%) пациентки, РНК НGV и ДНК EBV — у 1 (2,4%) больного. У 2 (4,8%) обследованных найдена ДНК PV В19. Генетического материала HDV, HHV 1, 2 и 8-го типов, CMV, TTV, NV-f не обнаружено ни у одного пациента. Таким образом, генетический материал ряда гепатотропных вирусов выявлен у 33,5% больных ОГНЭ.

При обследовании в первые 10 дней желтушного периода у больных отсутствовали маркёры гепатитов A, B, C (анти-HAV IgM, HBsAg, анти-HBcore IgM и G, анти-HCV). При повторном обследовании на маркёры вирусных гепатитов к 12-му дню пребывания в стационаре у 1 пациента найдены анти-HAV IgM (2,4%), к 14-му дню у 4 (9,5%) человек выявлены анти-HCV. Ретроспективно в замороженных образцах сывороток крови больных ОГНЭ в 3 (7,1%) случаях были обнаружены антитела (IgM) к вирусу гепатита Е (HEV).

Итак, на основании результатов иммунологического исследования и прямой детекции нуклеиновых кислот гепатотропных вирусов у 8 (19%) пациентов во время их пребывания в стационаре диагноз был верифицирован как вирусный гепатит А, С или Е и в группе больных ОГНЭ осталось 34 человека (8 мужчин и 26 женщин), среди которых преобладали пациенты среднего возраста (40—69 лет) — 67,7%. У 24 (70,6%) из них в анамнезе были парентеральные вмешательства в течение 6 мес до возникновения первых симптомов заболевания. За пределы Москвы в течение 3 мес до начала болезни выезжали 4 (11,8%) пациента: 3 (8,8%) — в Московскую область, 1 (2,9%) — в Дагестан.

На прием различных лекарственных препаратов и БАД на протяжении 6 мес до развития симптомов заболевания указывали 10 (29,4%) человек.

Больные поступали в стационар в период от 4-го до 18-го дня болезни, в среднем на $7,6\pm0,3$ день, от 1-го до 8-го дня желтухи $(2,7\pm0,2)$. Средняя продолжительность желтушного периода составила $12,9\pm0,7$ дня. Показатели активности AcAT и AлAT в крови у больных ОГНЭ в остром

периоде равнялись в среднем 1294 ± 84 (116-4293) и 1987 ± 76 (638-5748) мкмоль/(мин \cdot л) соответственно, γ -ГТП и ЩФ - 218 ± 67 (118-511) и 348 ± 41 (175-801) мкмоль/(мин \cdot л), билирубина - 163 ± 29 мкмоль/л (78-396). Показатели клинического анализа крови и мочи, уровень общего белка, альбумина и белковых фракций, протромбинового индекса и тимоловой пробы в биохимическом анализе крови у больных ОГНЭ были в пределах нормы.

Аутоиммунную природу гепатита исключили у 100% больных по результатам обследования на наличие аутоиммунных антител в крови — ни у одного из 34 пациентов АМА и ANA не были выявлены в диагностическом титре.

Средний койко-день у больных составил $14\pm5,3$ дня (от 6 до 22). При динамическом наблюдении через 1 мес от начала желтушного периода у всех пациентов в крови значительно уменьшились активность трансаминаз — АлАТ до 187 ± 32 мкмоль/(мин·л), AcAT до 106 ± 12 мкмоль/(мин·л) и содержание билирубина до 24 ± 8 мкмоль/л. При обследовании через 1, 3 и 6 мес ни у одного больного ОГНЭ не выявлены HBsAg, анти-HCV в крови, биохимические показатели к 6-му месяцу наблюдения были в пределах нормальных значений.

В остром периоде заболевания и при динамическом наблюдении было проведено определение антител к EBV, PV B-19 методом ИФА. У пациентов с наличием ДНК EBV в сыворотке крови иммуноглобулины к EBV классов A, M и G отсутствовали. В то же время в остром периоде анти-EBV IgM были выявлены у 2 пациентов при наличии в крови РНК HGV и ДНК HHV-6. У пациентки с наличием РНК HEV и ДНК EBV найдены анти-EBV IgG и анти-HEV IgM и G, что дало возможность диагностировать острый гепатит Е, но не позволило установить реактивацию EBV-инфекции. У больных с наличием ДНК PV В-19 в крови иммуноглобулины к парвовирусу В-19 классов М и С не выявлены в остром периоде, что не укладывается в типичную клиниколабораторную картину острой парвовирусной инфекции.

Таким образом, этиологическая роль EBV, HHV-6, PV B-19 и NV-f в структуре острых гепатитов неуточненной этиологии не подтверждена в большинстве наблюдений, а PHK HGV выявлена только в 9% случаев.

Результаты обследования больных ОГНЭ на наличие иммунологических маркёров НСV-инфекции. В группах больных ОГНЭ (n=23/34), ОГС (n=10) и контрольной группе (n=15) было проведено определение специфических антител на широкий спектр антигенов НСV. Согласно полученным данным, в контрольной группе не выявлены антитела ни на один из указанных антигенов НСV (титр антител <200). Результат

считался положительным при наличии антител в титре >200 к пяти и более антигенам HCV и зарегистрирован у 15 из 23 больных ОГНЭ: антитела в титре >200 к HCV и пептидам из его состава, Е1 и Е2, HVR-N и HVR-C, р7 HCV 1а и 1b и в титре >1000 к NS3 и пептидам из его состава, NS4, NS5A и NS5B. В группе больных ОГ С в высоком титре были определены антитела к соге HCV и пулам из его состава, E2, NS3 и пулам из его состава, NS4 и NS5b.

Для исключения ложнопозитивных результатов за счет присутствия в крови антител к флавивирусам, родственным НСУ, было проведено исследование сывороток крови больных ОГНЭ на наличие антител классов IgM и IgG к некоторым флавивирусам (вирусу клещевого энцефалита, вирусу лихорадки Западного Нила, вирусу лихорадки Денге) методом ИФА. С целью выявления возможной неспецифической серореактивности за счет полиспецифических антител проведено определение в крови иммуноглобулинов классов М и G к вирусу, не принадлежащему к семейству Flaviviridae (Крым-Конго геморрагической лихорадки). Полученные результаты также были отрицательными и таким образом были исключены как перекрестные, так и неспецифические положительные реакции.

Исследование Т-клеточного иммунного ответа на антигены HCV методом бласттрансформации лимфоцитов и количественная оценка секреции цитокинов. При ОГНЭ исследование Т-клеточной пролиферации лимфоцитов в ответ на стимуляцию антигенами HCV было проведено у 18 из 23 пациентов, при ОГС — у 10 пациентов, в группу контроля включены 10 здоровых лиц.

Среди больных ОГНЭ уровень индекса стимуляции (SI)≥1,7 в ответ на воздействие тремя и более антигенами НСV был выявлен у 7 из 18 (39%), из них к 3 антигенам (пептиды из состава НСV соге и NS4) — у 1 пациента, к 5 антигенам — у 2 пациентов (у одного к пептидам из состава NS3, а также к NS4, NS5A и NS5B, у другого — к пептидам из состава НСV соге, NS3, NS4), к 6 антигенам — у 1 пациентки (к пептидам из состава NS3, NS5B), к 10 и более антигенам — у 3 пациентов (к пептидам, представляющим соге НСV и NS3, а также NS4, NS5A и NS5B).

В группе больных ОГ С уровень SI≥1,7 был зарегистрирован в ответ на стимуляцию тремя и более антигенами HCV, которые были представлены белками соге HCV, NS3 и пептидами из их состава, а также белком NS4.

У здоровых лиц уровень SI≥1,7 был выявлен в единичных случаях — у 1 обследованного к HCV соге, у 2 — к NS3, что не позволяет считать указанные образцы сывороток положительными, так как нет соответствия условию позитивности (т. е. величина SI≥1,7 не регистрировалась к 3 и более индивидуальным антигенам HCV).

При сравнении результатов Т-клеточной пролиферации лимфоцитов в ответ на стимуляцию антигенами HCV группа больных ОГНЭ достоверно отличалась от группы контроля по уровню средних значений SI в ответ на стимуляцию NS3 пул № 1 — ак 1030—1132 (p=0,03), NS4 (p=0,001), NS5B (p=0,001). Группа больных ОГ С также достоверно отличалась по уровню SI в ответ на стимуляцию соге HCV пул № 3 — ак 129—177 (p=0,004), NS3 (p=0,005), NS4 (p=0,03), NS5A (p=0,01) от группы здоровых лиц и не отличалась от группы ОГНЭ.

Полученные результаты демонстрируют, что группы ОГНЭ и ОГ С схожи как по качественному, так и по количественному показателю — среднему уровню SI≥1,7, отражающему существующий Т-клеточный иммунный ответ на антигены HCV, который выявляется методом бласттрансформации лимфоцитов. В то же время обе эти группы по указанным параметрам достоверно отличаются от группы контроля.

Кроме того, у обследованных было проведено определение уровня секреции цитокинов (ИФН- γ , ИЛ-2, ИЛ-4, ИЛ-10 и перфорин) в ответ на стимуляцию антигенами HCV. Результат считался положительным при уровне секреции цитокинов >6,5 пкг/мл в ответ на стимуляцию тремя и более антигенами HCV.

Исследование уровней секреции ИЛ-10 и перфорина не давало возможности выявить достоверные различия в изучаемых группах. Так, низкая концентрация ИЛ-10 — менее 5 пкг/мл, что ниже уровня cut-off по рекомендациям производителя тест-системы, и чрезмерно высокий уровень концентрации перфорина — более 1000 пкг/мл не позволяли учитывать эти цитокины в качестве иммунологических маркёров в нашем исследовании.

В группе больных ОГ С (n=10) и ОГНЭ (n=23) наблюдали секрецию ИФН- γ в количестве 20 пкг/мл и более в ответ на стимуляцию антигенами HCV — соге HCV, NS3 и пулы из его состава, NS4, NS5A и NS5B. У здоровых лиц (n=10) уровень секреции ИФН- γ был значительно ниже (менее 6,5 пкг/мл) на единичные антигены HCV.

При ОГ С наблюдалась секреция ИЛ-2 в количестве более 60 пкг/мл в ответ на стимуляцию соге HCV, NS3, NS5B, у больных ОГНЭ продукция ИЛ-2 в концентрации более 60 пкг/мл регистрировалась на стимуляцию соге HCV и пептидами из его состава, NS3 и пептидами из его состава, NS5B. У здоровых лиц секреция ИЛ-2 составляла менее 10 пкг/мл в ответ на стимуляцию соге HCV пул 3.

В группе больных ОГ С выявлена секреция ИЛ-4 более 10 пкг/мл в ответ на стимуляцию соге HCV пулы 2, 3, NS3 пулы 3, 6, 7, NS5B, в группе ОГНЭ — более 10 пкг/мл в ответ только на стимуляцию NS3 пул 1. У здоровых лиц секреция ИЛ-4 составляла менее 10 пкг/мл.

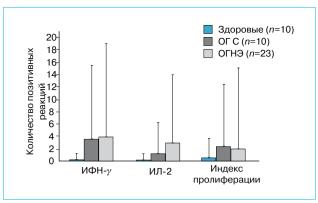


Рис. 2. Средние суммарные значения позитивных реакций при проведении Т-клеточной пролиферации и секреции цитокинов в ответ на стимуляцию антигенами HCV в группах обследованных больных и у здоровых лиц

Таким образом, регистрировалась идентичная картина при определении среднего уровня секреции цитокина ИФН- γ в ответ на стимуляцию антигенами НСV в группах больных ОГС и ОГНЭ. Продукция ИЛ-2 при ОГНЭ резко отличалась от таковой при ОГС — в группе больных ОГНЭ она наблюдалась в большей концентрации в ответ на стимуляцию соге НСV и пулы из его состава, NS3 и пулы из его состава, а также NS4, NS5A и NS5B, а в группе больных ОГС ИЛ-2 секретировался периферическими мононуклеарами в ответ на стимуляцию только соге НСV, NS3.

Алгоритм выявления пациентов с иммунологическими маркёрами HCV-инфекции с применением мультипараметрического критерия по результатам экспериментального исследования. С целью корректной оценки полученных результатов для каждого пациента групп ОГНЭ и ОГС, а также лиц контрольной группы было введено понятие «суммарное количество позитивных реакций» при исследовании Т-клеточной

пролиферации и секреции цитокинов в ответ на стимуляцию антигенами HCV: SI≥1,7, уровень секреции цитокинов >6,5 пкг/мл в ответ на стимуляцию как минимум тремя индивидуальными антигенами HCV. Средние суммарные значения позитивных реакций при исследовании Т-клеточной пролиферации и секреции цитокинов в ответ на стимуляцию антигенами HCV в группах больных ОГНЭ, ОГ С и у здоровых лиц представлены на рис. 2.

Учитывая результаты проведенного статистического анализа, было сделано заключение, что только уровень секреции цитокинов ИФН-у и ИЛ-2, количество позитивных реакций при определении в сыворотке крови методом ИФА специфических антител на спектр индивидуальных антигенов HCV (соге HCV, NS3, NS4, NS5a, NS5b), а также SI можно рассматривать в качестве критериев, позволяющих выявить пациентов с иммунологическими маркёрами HCV-инфекции. По данным параметрам группы больных ОГНЭ и ОГ С достоверно отличаются от группы контроля.

Поскольку только у 17% больных ОГНЭ (4/23), которым были проведено экспериментальное исследование, регистрировалось сочетание всех 3 показателей (обнаружение в сыворотке крови специфических антител на спектр индивидуальных антигенов HCV методом ИФА, наличие Т-клеточного иммунного ответа на антигены НСУ методом бласттрансформации лимфоцитов в ответ на стимуляцию антигенами HCV с регистрируемой секрецией цитокинов), а у остальных имелось сочетание только 2 показателей в различных комбинациях, для выявления пациентов с иммунологическими маркёрами HCV-инфекции был введен мультипараметрический критерий позитивности. Критерий включал 6 параметров: суммарные уровни секреции ИФН-у и ИЛ-2, количество позитивных реакций при Т-клеточной пролифе-

Таблица 2 Параметры выявления пациентов с иммунологическими маркёрами HCV-инфекции (по результатам экспериментальных методов исследования сыворотки крови у больных ОГНЭ)

Параметр	Значение
Суммарный уровень, пкг/мл:	
ИФН-у	≥150
ИЛ-2	≥100
Количество позитивных реакций при определении секреции:	
ИФН-у	≥3
ИЛ-2	≥1
Количество позитивных реакций:	
при проведении Т-клеточной пролиферации	≥2
при определении в сыворотке крови методом ИФА специфических антител на спектр индивидуальных антигенов HCV (core HCV, NS3, NS4, NS5a, NS5b)	≥5

рации лимфоцитов и секреции цитокинов в ответ на стимуляцию антигенами HCV, а также количество позитивных реакций при определении в сыворотке крови методом ИФА специфических антител на спектр индивидуальных антигенов HCV (core HCV, NS3, NS4, NS5a, NS5b). Результат рассматривали как положительный при наличии 4 и более параметров из 6 предложенных, причем учитывались различные их сочетания (табл. 2).

После введения мультипараметрического критерия были проанализированы результаты экспериментального исследования сывороток крови 23 больных ОГНЭ. Различные сочетания 4 и более параметров из 6 были выявлены у 43,5% из 23 пациентов данной группы.

Таким образом, полученные результаты позволили на основании введения мультипараметрического критерия позитивности, включающего 6 параметров, выявить у 43,5% больных ОГНЭ, обследованных в динамике (1 и 3—6-й месяцы от

начала заболевания) иммунологические маркёры перенесенной HCV-инфекции.

Выводы

- 1. В структуре больных острым гепатитом, не выезжавших в эндемичные регионы, выявлен вирусный гепатит E- в 4,8% случаев с использованием метода ИФА, в том числе в 2,4% одновременно методами ИФА и ПЦР.
- 2. Можно предполагать, что доля острой HCV-инфекции с атипичным серологическим профилем (по данным коммерческих тест-систем) составляет 17% при ОГНЭ, а при условии введения мультипараметрического диагностического критерия, включающего 6 параметров, 43,5%.

Работа выполнена в рамках реализации ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009—2013 годы.

Список литературы

- 1. Михайлов М. И., Малинникова Е.Ю., Кюрегян К.К. и др. Групповая заболеваемость гепатитом Е в г. Коврове Владимирской области (предварительное сообщение) // Труды Института полиомиелита и вирусных энцефалитов им. М.П. Чумакова РАМН. Т. 26 / Материалы науч.-практ. конф. «Актуальные проблемы медицинской вирусологии», посвященной столетию со дня рождения основателя института Михаила Петровича Чумакова. С. 239—245.
- 2. *Онищенко Г.Г., Жебрун А.Б.* Вирусные гепатиты в Российской Федерации: Справочник. СПб: ФГУН НИИЭИ им. Пастера, 2009. С. 6.
- 3. Alter H.J., Sanchez-Pescador R., Urdea M.S. et al. Evaluation of branch DNA signal amplification for the detection of hepatitis C virus RNA // J. Viral Hepat. 1995. Vol. 2. P. 121—132.
- Bronowiscki J.P., Vetter D., Uhl G. et al. Lymphocyte reactivity to hepatitis C virus (HCV) antigens shows evidence for exposure to HCV in HCV-seronegative spouses of HCV-infected patients // J. Infect. Dis. 1997. Vol. 176, N 2. P. 518–522.
 Cox A.L., Mosbruger T., Lauer G.M. et al. Comprehensive
- Cox A.L., Mosbruger T., Lauer G.M. et al. Comprehensive analyses of CD8+ T cell responses during longitudinal study of acute human hepatitis C // Hepatology. – 2005. – Vol. 42, N 1. – P. 104–112.

- Hitziger T., Schmidt M., Schottstedt V. et al. Cellular immune response to hepatitis C virus (HCV) in nonviremic blood donors with indeterminate anti-HCV reactivity // Transfusion. – 2009. – Vol. 49. – P. 1306–1313.
- Hoofnagle J.H. Course and outcome of hepatitis C // Hepatology. – 2002. – Vol. 36. – P. 21–29.
- 8. *Kamal S.M.*, *Amin A.*, *Madwar M.* et al. Cellular immune responses in seronegative sexual contacts of acute hepatitis C patients // J. Virol. 2004. Vol. 78, N 22. P. 12252—12258.
- Koziel M.J., Wong D.K., Dudley D. et al. Hepatitis
 C virus-specific cytolytic T lymphocyte and T helper
 cell responses in seronegative persons // J. Infect. Dis.
 1997. Vol. 176, N 4. P. 859–866.
 Quinti I., Hassan N.F., Salman D. et al. Hepatitis C
- Quinti I., Hassan N.F., Salman D. et al. Hepatitis C virus-specific B-cell activation: IgG and IgM detection in acute and chronic hepatitis C // J. Hepatol. 1995. Vol. 23, N 6. P. 640–644.
- 11. Scognamiglio P., Accapezzato D., Casciaro M.A. et al. Presence of effector CD8+ T cells in hepatitis C virusexposed healthy seronegative donors // J. Immunol. – 1999. – Vol. 162, N 11. – P. 6681–6689.
- 12. Takaki A., Wiese M., Maertens G. et al. Cellular immune response persist and humoral responses decrease two decades after recovery from a single-source outbreak of hepatitis C // Nat. Med. – 2000. – Vol. 6. – P. 578– 582