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Цель обзора. Отразить современные представле-
ния о роли микробиома в поддержании здоровья 
человека и развитии различных заболеваний.
Краткое содержание. Благодаря современным 
достижениям молекулярной и клеточной биоло-
гии существенно расширились наши представле-
ния о патогенезе многих заболеваний человека 
и разработаны новые подходы к их диагностике, 
лечению и профилактике. На основе результатов 
современных молекулярных, генетических, эпиге-
нетических, микробиологических и биохимических 
исследований стало возможным, с одной стороны, 
изучать точечные мутации и варианты полиморфиз-
ма отдельных нуклеотидов в рамках полногеномного 
анализа, с другой — с помощью высокоточного ана-
лиза и других методик проводить одновременное 
исследование тысяч генов (анализ ДНК) или их про-
изводных (РНК и белки) с созданием индивидуаль-
ного профиля самих генов или их экспрессии («гене-
тическая подпись»), а также осуществлять анализ 
индивидуального микробиома пациента с оценкой 
его патогенного потенциала. Подобные исследо-
вания позволяют все чаще проводить оценку инди-
видуальной предрасположенности к заболевани-
ям, прогноза болезни и эффективности выбранной 
стратегии лечения («персонализированная меди-
цина»).
Заключение. Исследование микробиома человека, 
а также полногеномные исследования способствуют 
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Aim: to present the modern concept of physiological 
and pathophysiological impact of microbiome.
Summary: Major advances in molecular and cell biol-
ogy significantly improved our understanding of dis-
ease pathogenesis as well as in novel strategies for the 
diagnosis, therapy and prevention of human diseases. 
Based on modern molecular, genetic, epigenetic micro-
biologic and biochemical studies it is, on the one hand, 
possible to identify disease-related point mutations and 
single nucleotide polymorphisms within genome-wide 
association analyses (GWAS). On the other hand, high 
throughput array and other technologies  made it pos-
sible to simultaneously analyze thousands of genes 
(DNA) or gene products (RNA and proteins), resulting 
in an individual gene or gene expression profile (‘sig-
nature’) or to characterize the individual microbiome 
and its pathogenetic potential. Such data increasingly 
allow to define the individual disease predisposition and 
to predict disease prognosis as well as the efficacy of 
therapeutic strategies in the individual patient (‘person-
alized medicine’). 
Conclusion: Studying of human microbiome along with 
GWAS contributed greatly to the recent advances in the 
diagnosis, treatment and prevention of human diseases.
Key words: microbiota, fecal transplantation, inflam-
matory bowel disease, obesity, atherosclerosis, neuro-
degenerative diseases
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достижению новых успехов в диагностике, лечении 
и профилактике заболеваний человека.
Ключевые слова: микробиота, пересадка кала, 
воспалительные заболевания кишечника, ожирение, 
атеросклероз, нейродегенеративные заболевания.

The basic aspects of molecular and cell biology 
are not only integral part of biomedical 
research but are also translated into patient 

care. Several global consortia have been launched 
and in part completed during the last decades. All 
of them continuously transform basic biomedical 
research and translate into medical applications 
and, after evaluation in randomized clinical trials, 
enter clinical practice with a tremendous potential 
to advance the diagnosis, treatment and prevention 
of human diseases.

More than 15 years ago, the international human 
genome organization (HUGO) project established 
the complete sequence of the ca. 3 billion base pairs 
that make up the human genome [1, 2]. In order 
to utilize these data from the HUGO project for 
research as well as for clinical applications and 
to define the functions of newly identified genes, 
collectively termed ‘functional genomics’, strategies 
were developed to globally analyze genomic DNA 
sequences as well as their cell-, tissue- or organ-
specific expression profile. Using chips, so-called 
‘microarrays’, thousands or ten thousands of single-
stranded DNA species, reverse transcribed RNA 
(cDNA) or oligonucleotides of known sequence can 
provide a global gene (genomics), gene expression 
(transcriptomics, proteomics) or metabolite 
(metabolomics) profile (‘signature’) that is 
characteristic for the disease of individual patients, 
including its natural course, prognosis and response 
to therapy.

In 2005 the international haplotype map 
(HapMap) project was initiated to identify via 
genome-wide association studies (GWAS) in 
ethnically different populations, single nucleotide 
polymorphisms (SNPs) and their association with 
specific human diseases and individual phenotypic 
characteristics [3, 4]. Through GWAS an increasing 
number of gene loci have been identified that are 
associated with individual (future) phenotypic 
traits, such as hair or eye color, height, body mass 
index and others as well as with the predisposition 
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to specific disease [3, 4]. Further, genetic variants 
are associated with the individuals’ response to drug 
treatment, e. g., to lithium [5]. Overall, GWAS 
allow an increasingly better understanding of 
disease pathogenesis and a more accurate assessment 
of the individual risk to develop a specific disease. 
Clinically, this may eventually translate into clinical 
advances in disease prevention, early diagnosis and 
therapy. It should be cautioned, however, that the 
contribution of a defined SNP to the risk assessment 
for a given disease must be weighed by established 
clinical parameters and needs to be carefully 
evaluated before clinical utilization.

The Human Microbiome Project
The human microbiome project (HMP) was 

established as another global consortium [6–10]. 
The HMP and the ‘Metagenomics of the Human 
Intestinal Tract (Meta-HiT) Consortium Europe’ 
aim at the sequencing of all microbes (eukaryotes, 
archaea, bacteria, viruses) that inhabit specific 
body sites, such as the mouth, throat and airways, 
stomach and intestine, the urogenital system and 
the skin, respectively. Recent data demonstrate that 
specific compositions of the microbial community are 
associated with health and disease and suggest that 
the detailed characterization, function and variation 
of the microbial communities will reveal important 
commensal host-microbe as well as microbe-microbe 
interactions with diagnostic, therapeutic and 
preventive implications [11, 12].

While the HMP has meanwhile developed into 
a major field of biomedical research, the intestinal 
microbial community in particular has turned out to 
play a major role in human health as well as in and 
disease pathogenesis as will be discussed in more 
detail below [13].

The intestinal microbial community
In recent years the intestinal microbial 

community has been studied in great detail. It 
represents a microbial ecosystem consisting of 
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trillion microbial cells with an aggregate 9.9 million 
microbial genes across the fecal microbiome [14]. 
While until recently, the environment in  utero 
has been considered sterile, DNA-based analyses 
identified bacterial species in maternal placenta, 
amniotic fluid and meconium. The colonization of 
the human gut begins at birth with a rapid expansion 
of bacterial diversity and is characterized by a 
successively changing composition that eventually 
becomes relatively stable in adulthood [15]. While 
the specific microbial species and subspecies and 
their proportions vary greatly from person to person 
the individual microbiome is unique and becomes 
more diverse in the elderly.

Important factors for the composition of the 
intestinal microbial community are endogenous 
and exogenous factors [16, 17]. Examples are the 
mode of delivery of the neonates, diet (dietary 
supplements, breast-feeding, formula-feeding), 
xenobiotics, including antibiotics and other drugs 
[18–21]. Further, infections and exposure to 
environmental microbial agents are established risk 
factors for childhood diseases, such as obesity and 
allergy [22, 23]. Recent evidence further suggests 
that human genetic variation also influences the 
abundance of specific members of the intestinal 
microbial community [24].

Taken together, the emerging data suggest that 
the detailed characterization of the human intestinal 
microbiome composition, function and variation 
across different body sites will reveal important 
commensal host-microbe as well as microbe-microbe 
interactions that may play a role in human health 
and disease.

In view of the numerous and diverse 
physiological functions of the intestinal microbiota 
in human health (Table 1) it is not surprising that 
it is also involved in gastrointestinal as well as non-
gastrointestinal diseases, such as obesity/metabolic 
syndrome, and atherosclerosis/cardiovascular as well 
as neurologic/psychiatric and neurodegenerative 
diseases, making it one of the most dynamic current 
topics in biomedical research (Table 2). In the 
following, a few examples will be discussed in more 
detail.

Inflammatory bowel diseases  
and colon cancer

The inflammatory bowel diseases (IBD) in humans 
include ulcerative colitis (UC) and Crohn disease 
(CD). These are characterized by inflammation 
limited to the mucosal layer of the colon in UC and 
the transmural involvement of the gastrointestinal 
tract, including extraintestinal sites in CD. While 
the pathogenesis of IBD is not fully understood 
[25], it is clear that its pathology depends among 
others on the intestinal microbial community [26, 
27]. Further, a case-control study identified ‘IBD-
specific’ alterations of the intestinal microbiota that 

may serve as biomarkers for the prediction of disease 
predisposition, activity/severity and responsiveness 
to therapy [28, 29].

Host genes with effects on the composition of 
the intestinal microbiota are the IgA locus and 
the HLA genes as well as the defensin genes, the 
NOD2 gene, the resistin-like molecule beta gene, 
the apolipoprotein I gene, the MEFV gene and the 
myeloid differentiation primary response protein 
88 gene. The three components — environment, host 
genetics and the microbial community — interact 
to maintain homeostasis in the intestine [7]. The 
disruption of the stability of this interaction may 
be a trigger for disease development. Two recent 
publications shed a new light on the pathogenesis of 
IBD through the change of the intestinal microbial 
composition involving two different pathways: 
helminth invasion [30] and lipocalin-2 expression 
[31], respectively.

Helminth  invasion, microbial  community and 
IBD. Epidemiologic studies demonstrated a major 
increase of the incidence of IBD in the developed 
world, suggesting a change in the environment, 
including an alteration of the intestinal microbiome 
[32] and a decreased exposure to intestinal parasites, 
such as helminths [33]. In mice deficient for the 
CD susceptibility gene Nod2 (Nod2-/- knockout) 
[34] it could be demonstrated that small intestinal 
abnormalities develop at sustained colonization 
by the inflammatory bacterium Bacteroides 
vulgatus, an ubiquitous member of the intestinal 
microbial community [35]. Chronic infection of 
Nod2-/- mice with the parasitic worm Trichuris 
muris, however, inhibited colonization with 
inflammatory Bacteroides species and promoted the 
establishment of a protective microbial environment 
enriched in Clostridiales [30]. Further, the authors 
demonstrated that individuals from helminth-
endemic regions harbour a similar protective 
microbial community and deworming treatment 
reduced Clostridiales and increased Bacteriodales, 
resulting in an increased IBD incidence. These 
data support the ‘hygiene hypothesis’ whereby 
certain individuals are genetically susceptible to 
the consequences of a changing intestinal microbial 
community that favors IBD development.

Lipocalin‑2  protection  from  IBD  and  colon 
cancer. Lipocalin-2 (Lcn2) is an antimicrobial 
peptide with high mucosal and fecal concentrations 
in patients with IBD. It is produced by various 
cell types, including epithelial cells, and acts as 
an antimicrobial defense mediator by binding to a 
subset of bacterial siderophores, thereby preventing 
bacterial iron acquisition and growth of siderophore-
dependent strains. While it has been implicated 
in several biologic processes, such as acute phase 
response, erythropoiesis and iron metabolism, its 
functional role in contributing to IBD development 
remained unclear.
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To decipher the role of Lcn2 in colon 
inflammation, mice double deficient in Lcn2 
and IL-10 (Lcn2-/-/IL10-/-  double knockout) 
were generated and compared to single knockout 
and wild-type animals. The experimental data 
indicate that Lcn2 expression protects from early 
onset colitis and from the spontaneous emergence 
of right-sided colonic tumors that result from 
IL-10 deficiency. Inflammation is driven by 
IL-6 which controls tumorigenesis as well. The  
Lcn2-/-/IL10-/- double knockout mice showed 
major alterations of their intestinal microbial 
community, especially with respect to the facultative 
pathogenic Alistipes  spp. These contribute to 
inflammation and tumorigenesis as shown by the 
transmissibility of the phenotype and by protective 
effect of antibiotic therapy. Taken together, the 
authors demonstrate that Lcn2 protects against 
intestinal inflammation and tumorigenesis in the face 
of an altered intestinal microbial composition [31].

Recently, it was discovered that the probiotic 
Lactobacillus  casei  strain ATCC334 produces 
ferrichrome that inhibits colon cancer progression 
by apoptosis mediated through the c-Jun N-terminal 
kinase pathway [36], possibly representing a novel 
tumor-suppressing strategy.

Obesity
Obesity [37], insulin resistance [38] and 

kwashiorkor [39, 40] are examples for which a 
correlation between intestinal microbial dysbiosis 
and the clinical state has been demonstrated. 
Further, in genetically susceptible hosts, the 
transplantation of fecal microbiota from healthy 
donors to patients resulted in clinical improvement 
[41]. The underlying concept is a ‘common ground 
hypothesis’ that involves a leaky mucosa caused 
by various endogenous or exogenous factors, the 
expansion of opportunistic microbes (dysbiotic 
pathobionts) with the generation of pathogenic 
microbial gene products which can be transferred to 
genetically susceptible individuals [13].

Atherosclerosis and thrombosis risk
Recent studies suggest that intestinal microbes 

are involved in atherosclerosis development. In this 
context, foods rich in choline, phosphatidylcholine 
and carnitine such as meat, egg yolk and high-
fat dairy products, serve as precursors of 
trimethylamine (TMA) and TMA N-oxide (TMAO) 
that accelerates atherosclerosis [42]. Elevated 
TMAO blood levels are associated with an increased 
risk for atherosclerotic heart disease and major 
adverse cardiac event incidence. Further, TMAO 
enhances platelet hyperreactivity and thrombotic 
events in animal models, employing dietary 
choline or TMAO, germ-free mice and microbial 
transplantation, collectively confirming the key role 
of intestinal microbiota [43]. Taken together, these 

results reveal a previously unknown link between 
specific dietary nutrients, intestinal microbes and 
thrombosis risk.

The intestinal TMAO formation is a two-
step process involving the generation of TMA by 
intestinal microbes after food ingestion and the 
hepatic conversion of TMA to TMAO by host flavin 
monooxygenases. Wang et al. [44] demonstrated 
that 3,3-dimethyl-1-butanol (DMB), choline 
structural analog, blocks the intestinal TMA 
formation inhibiting microbial TMA lyase that 
results in reduced TMAO levels. Thus, ‘drugging 
the microbiome’ with DMB may be a novel approach 
for the prevention/treatment of atherosclerosis.

Neurodevelopmental, psychiatric  
and neurodegenerative diseases

Studies investigating the intestinal microbial-
brain communication (gut-brain axis) demonstrate 
a critical role of the intestinal microbial community 
in modulating the maturation and function of tissue-
resident immune cells in the central nervous system 
(CNS) as well as the activation of peripheral immune 
cells involved in neuroinflammation, brain injury, 
autoimmunity and neurogenesis [45]. Germ-free 
mice raised under sterile conditions or mice depleted 
of their intestinal microbiota by antibiotics show 
major alterations in behaviours or neuropathologies 
that characterize neurodevelopmental, psychiatric 
and neurodegenerative disorders [46] like autism 
spectrum disorders, depression and Alzheimer’s or 
Parkinson’s disease (Table 2).

An impressive example for a pathogenic role of 
the intestinal microbial community is Parkinson’s 
disease (PD). In patients with PD, plaques in brain 
cells as well as in the intestine containing neurotoxic 
protein alpha-synuclein (AS) are a hallmark of 
the disease. For example, in PD patients gastric 
motility is frequently impaired [47] and intestinal 
AS levels are elevated [48].

In a mouse model overexpressing AS the animals 
indeed develop neurologic deficits resembling those 
of PD patients. Recently, three lines of evidence 
demonstrated a central role of the intestinal 
microbial community in the pathogenesis of PD: (1) 
in the PD mouse model germ-free animals developed 
fewer plaques and almost no neurological deficits 
as compared to conventionally colonized controls, 
(2) treatment of PD mice with antibiotics resulted 
in an improvement of the neurological deficits and 
(3) fecal transplantation from patients with PD 
to germ-free mice resulted in neurological deficits 
resembling PD [49].

The underlying concept is the central 
contribution of the microbial community to a defect 
of the microglia via short-chain fatty acids (SCFAs) 
that represent bacterial fermentation products [50]. 
While germ-free mice showed reduced microglia, 
SCFAs modulated microglia and enhanced PD 
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pathophysiology [49]. The identification of the 
disease-causing bacteria and the mechanism leading 
to the deposition of the neurotoxic AS plaques 
await further clarification.

Basic biomedical research has made major 
advances in recent years and provides increasing 
amounts of individual diagnostic, preventive as well 
as therapeutic options for patients with inherited 
or acquired, malignant or non-malignant diseases. 
Apart from an increasing number of host genetic 
susceptibility loci and environmental factors, the 
individual microbial community is central for the 
barrier between microbes and hosts. In particular, 
the intestinal microbial community is involved 
in a large number of normal biological functions 
in health (Table 1) as well as in numerous 
common, gastrointestinal and non-gastrointestinal 
diseases, such as obesity/metabolic syndrome, 

atherosclerosis/thrombosis or neurodevelopmental, 
psychiatric and neurodegenerative diseases 
(Table 2). Dietary interventions targeting intestinal 
microbiota, such as caloric restricted diets rich 
in fiber and vegetables as well as fecal microbial 
transplantation are examples of health benefits in 
humans. In recent years, the intestinal microbiome 
thus has become one of the most dynamic areas 
of biomedical research that holds an enormous 
potential for interventions regarding human health 
and diseases.

Table 1. Examples of the intestinal microbial 
community functions in human health.

Tабл. 1. Основные функции кишечного 
микробного сообщества у здорового человека

References

Host Physiology
Adaptive immunity [51]

Autoimmunity [52]

Innate immunity [53]

Cell proliferation [54]

Bone density [20]

Vascularization [55]

Neurological signalling [56]

Biosynthesis
Neurotransmitters

Steroid hormones

Vitamins

Metabolism
Dietary components

Bile salts

Drugs

Xenobiotics

Table 2. Examples of diseases associated to 
intestinal microbial community.

Табл. 2. Основные заболевания, связанные 
с состоянием кишечного микробного  

сообщества (примеры)

References

Allergies/ Allergy protection [23, 52, 
57–59]

Atherosclerosis/ Thrombosis/ 
Cardiovascular Disease

[42–44, 
60–63]

Cancer [64, 65]

Diabetes mellitus [38, 66]

Immune-Mediated Inflammatory 
Diseases

Inflammatory bowel diseases [26, 27, 30, 
31, 67, 68]

Multiple sclerosis [69, 70]

Rheumatoid arthritis [71]

Psoriasis [72]

Kwashiorkor [39, 40]

Liver Diseases [73, 74]

Metabolic Syndrome/ Obesity [37, 75–78]

Neurodevelopmental, psychiatric 
and neurodegenerative diseases

Autism  [45, 79]

Depression [45, 80]

Alzheimer’s Disease, Parkinson’s 
Disease

[45, 49, 50, 
81, 82]
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