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Aim: To review the main methods of intestinal microbiota studying.

Key points. Currently, molecular genetic methods are used mainly for basic research and do not have a unified
protocol for data analysis, which makes it difficult to implement them in clinical practice. Measurement of short chain
fatty acids (SCFA) concentrations in plasma provides the data, which can serve as an indirect biomarker of the colonic
microbiota composition. However, currently available evidence is insufficient to relate the obtained values (SCFA
levels and ratio) to a particular disease with a high degree of certainty. Trimethylamine N-oxide (TMAO) levels in the
blood plasma and urine can also reflect the presence of specific bacterial clusters containing genes Cut, CntA/CntB
and YeaW/YeaX. Therefore, further studies are required to reveal possible correlations between certain disorders and
such parameters as the composition of gut microbiota, dietary patterns and TMAO concentration. Gas biomarkers,
i.e. hydrogen, methane and hydrogen sulphide, have been studied in more detail and are better understood as
compared to other biomarkers of the gut microbiome composition and functionality. The main advantage of gas
biomarkers is that they can be measured multiple times using non-invasive techniques. These measurements
provide information on the relative proportion of hydrogenic (i.e. hydrogen producing) and hydrogenotrophic (i.e.
methanogenic and sulfate-reducing) microorganisms. In its turn, this opens up the possibility of developing new
approaches to correction of individual microbiota components.

Conclusions. Integration of the data obtained by gut microbiota studies at the genome, transcriptome and
metabolome levels would allow a comprehensive analysis of microbial community function and its interaction with
the human organism. This approach may increase our understanding of the pathogenesis of various diseases as well
open up new opportunities for prevention and treatment.
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Llenb nyGnvkauum: paccMoTpeTb OCHOBHbIE METOAbI CCIIEA0BaHNS MUKPOBUOTbI XXENyA04HO-KULLEYHOrO TpakTa.
OcCHOBHbIE MOJNIOXKEeHUsa. B HacTosilee BpeMSA MONEKYNSIPHO-FrEHETUYECKME METOAbl MCMOJb3YIOTCS NpenmMyLle-
CTBEHHO /19 GYHAAMEHTaSIbHbIX UCCNEA0BAHUN N HE MMEIOT €ANHOI0 «MPOTOKONa» aHaIn3a AaHHbIX, YTO 3aTPyOoHSA-
€T VX BHEeLpEHVE B KIIMHNYECKYIO NPakTuky. iccnenoBaHne KopoTkoLenoyevHbIX XXMPHbIX kncnoT (KUXKK) B nnasme
KPOBU MOXET CIYXWUTb KOCBEHHbIM MapKepoM MUKPOOHOro CocTaBa TONCTOM KULLUKW, OAHAKO HA CErOaHsA Henb3s
C YBEPEHHOCTbIO CBA3ATb KONMYECTBO 1 COOTHOLEHMe onpegensgemMblx KLKK ¢ onpeneneHHon HO30/10rnyeckom
dopmoit; naydeHme yposHs TMAQO B niasme KPOBU U MOYE TakxkKe MOXET OTpaxaTb Hanm4me B COCTaBe KULLIEYHOM
MUKPOOMOTHLI 0COBLIX KnacTepoB OakTepuin, Hecylimx reHbl Cut, CntA/CntB n YeaW/YeaX. OgHako HEOOXOaAMMbI
JanbHerwne NccneaoBaHns No BbISBAEHUIO KOPPENSLMOHHbBIX CBA3EN MeXAy OnpeaesieHHbIMU 3a001eBaHnsaAMU,
MUKPOOHbIM cocTaBoM XKT, paumoHom 1 ypoeHeM TMAO. Masosbie Guomapkepbl (BOAOPOA, METAaH U CEPOBOAO-
pona,) ropasao Jyylle ndyyeHbl Mo CPABHEHUIO C APYTMMUY TUNnaMu 61MoMapKkepoB GyHKLUUM 1 COCTaBa MUKPOOMOTHI.
MpenmMyLLLECTBOM ra3oBbix 6IOMAPKEPOB ABAAETCSH BO3SMOXHOCTb X HEMHBA3MBHOI0, MHOFOKPATHOIroO N3MepeHus,
4YTO NO3BOJIAET MOJIy4aTb MHPOPMALMIO O COOTHOLUEHUN MMOPOrEHHbLIX U TMAPOreHOTPOMHbLIX MUKPOOPraHU3MOB.
BbiBogbl. O6beanHeHVE NHGOPMALIMN, MOMYYEHHOW NPU NCCNEA0BAHUAX KULLEYHOM MUKPOOUOTLI HA YPOBHSX re-
HOMa, TPaHCKPMNTOMa 1 MeTabonoma, NMO3BOINT MPOMN3BECTU Bonee rmybokunii aHanu3 coctara U GYHKLMOHNPOBA-
HUS MUKPOOMOTBI YenoBeka. Takor NoaxXo4 UMeeT HECOMHEHHbIV NOTeHUMan ajisi MOHMMaHWs natoreHe3a pasnmy-
HbIX 3200/1EBAHN 1 OTKPbIBAET BO3MOXHOCTU AJ19 pa3pabOoTKy HOBbIX CTPATErnii NPOPUNAKTUKA 1 IEYEHUS.
KnioueBble cnoBa: MnkpobroTa, MUKPOOMOM, MeTabosioM, TPAHCKPUNTOM, CEKBEHUPOBAHUE, TPUMETUIAMUH,
TPUMETUIAMNUHOKCULA, KOPOTKOLLENOYEYHbIE XUPHbIE KUC/IOThl, BOAOPOA, METaH, CEPOBOAOPOL.
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view of the main lines of research into the composi-
tion of human gut microbiota.

Introduction

The number of microorganisms inhabiting the
GI tract has been estimated at around 10' [1, 2].

In healthy adults, over 90 % of the gut bacteria be-
long to the four dominant bacterial phyla such as
Firmicutes, Bacteroidetes, Actinobacteria, and
Proteobacteria, whereas other phyla are present in
insignificant amounts [3].

Presently, gut microbiota is regarded as an inde-
pendent “organ”, which regulates multiple metabolic
processes in the host organism and has the same im-
portance as other vital organs.

A large part of the gut microbiota functions is
performed via metabolic intermediates and end-prod-
ucts. Investigation of the microbial population and
its changes associated with various diseases has an
evident practical value. This paper provides an over-

Genome and transcriptome analysis

Molecular genetic research methods can be classi-
fied into several groups.

Polymerase chain reaction (PCR) is the most
widely used method of genomic studies. A couple
of short complementary stretches of DNA that ini-
tiate the PCR reaction (primers) are selected for a
target DNA. As a result of the PCR reaction, the
target DNA is amplified allowing to detect the PCR
product and determine the presence or absence of a
specific microorganism in the analyzed sample [4].
A real-time PCR allows to quantify the sample and
assess the share of a specific species in the biomass,
and monitor the dynamics of its changes during drug
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therapy [5]. This method is especially helpful for
detecting infectious agents as well as for identify-
ing strains with particular characteristics of interest.
For instance, real-time polymerase chain reaction
with fluorescent hybridization probes makes it pos-
sible to identify and differentiate the DNA of patho-
genic E. coli strains in clinical samples. However,
the method has certain limitations. First, it can be
used to detect only known species of microorganisms
since it is impossible to generate appropriate prim-
ers for an unknown target sequence [6, 7]. Besides,
it is technically difficult to identify more than three
microorganisms in the course of one PCR reaction.

Targeted sequencing. Essentially, targeted se-
quencing involves the analysis of one or several tar-
get genomic sequences. Since the bulk of human GI
microbiota is made up of bacteria, researchers have
focused mainly on the 16S rRNA gene codes [8].
Investigations using this method allowed to iden-
tify three major enterotypes based on predomina-
tion of certain bacterial genera: 1 — Bacteroides,
2 — Prevotella, 3 — Firmicutes [9,10]. Previously,
the enterotype was regarded as a stable characteris-
tic of individuals. However, recently obtained data
indicate that the enterotype can change over time
[11]. Besides, targeted sequencing allows to assess
the parameters, which can have importance for clini-
cal practice: namely, “immunity from diseases”, di-
versity of the microbiota composition, the ability of
bacteria to synthesize vitamins and produce butyric
acid.

Various diseases have certain corresponding pat-
terns of microbiota organization, i.e. consistent pat-
terns of the taxonomic and quantitative composi-
tion of microbial communities. While analyzing the
results of sample sequencing, the sample profile is
compared against the data on several diseases: type
II diabetes mellitus, Crohn’s disease, ulcerative
colitis, obesity, atherosclerosis (including ischemic
heart disease). Subsequently, the level of protection
against each of the diseases is can be calculated.

Microbiota diversity is critically important: more
bacterial species means a higher functional potential
of the whole microbiome. In a diverse microbiome,
different species are more likely to have complemen-
tary functions, able to make up for the species that
disappeared as a result of antibiotic therapy or un-
balanced diet. If the diversity index is low, this is
not the case.

Targeted sequencing allows to assess the capa-
bility of gut microbiota to synthesize the following
vitamins: vitamin B, (riboflavin), vitamin B, (thia-
mine pyrophosphate), vitamin K, vitamin B, (folic
acid), vitamin B, (panthothenic acid), vitamin B,
(nicotinic acid), vitamin B, (pyridoxal 5’-phosphate)
u vitamin B, (biotin).

In a number of studies, target sequencing was used
to analyze the functional activity of gut microbiota.
It was shown that the presence of commensal bac-
teria (e.g. lactobacteria) in the gut microbiota cor-

relates with its capability to synthesize short-chain
fatty acids (acetate, butyrate and propionate) [12—
16]. Similarly, other researchers developed a system
for evaluating the capability of bacteria from human
fecal samples to produce trimethylamine (TMA).
The system involves investigation of the genes en-
coding the respective enzyme [17]. Still other studies
yielded the results that can be used to reveal a cor-
relation between the composition of microbiota and
its capability to synthesize hydrogen, methane and
ammonia [18—23].

Among the limitations of this method, one can
point out its reduced accuracy due to the presence of
similar conservative fragments in the genome of vari-
ous microorganisms found in the analyzed sample. As
a result, while describing a microbial community, it
is virtually impossible to use such notions as species,
genus, etc. In order to find at least a terminologi-
cal solution to the problem, an operational defini-
tion such as an Operational Taxonomic Unit (OTU)
was coined. While describing the results, this term is
used as a synonym of a “taxon”. There exists a num-
ber of bioinformatics resources (PICRUSt, Tax4Fun,
Piphillin, FUNGuild) that predicts the functional
capabilities of microbial communities based on the
taxonomic composition data obtained using targeted
sequencing [26, 27].

Errors associated with this method include an in-
sufficient mass of the sample [28], failure to choose
a correct variable region or amplicon size [29] as
well as insufficient number of PCR cycles preceding
sequencing [30].

At the same time, the information about new
functions of known members of the gut microbiota is
being constantly updated opening up new possibili-
ties for targeted sequencing [31].

Whole genome sequencing. The method en-
tails fragmentation and sequencing of all genomic
DNA in a sample. As compared to targeted sequenc-
ing, this technique provides more detailed informa-
tion about the microbial species diversity. At a suf-
ficient sequencing depth, bacteria can be identified
within a one-strain accuracy [32, 33]. This method
allows to obtain information on the genes encoding
proteins and enzymes as well as those involved in the
biosynthesis and catabolism of various organic com-
pounds. On the basis of these results, one can derive
conclusions about the metabolic potential of microbi-
ota [34, 35]. The main advantage of the method is its
usability for examining the microbial community’s
resistome, i.e. set of antibiotic resistance genes.

Recent years have seen a growing number of in-
testinal microbiota studies using single-molecule
(nanopore) sequencing. This method is absolutely
indispensable for the analysis of full genomes of each
microorganism in the data pool with subsequent
identification of the strains containing a certain
functional sequence or resistance factors.

RNA sequencing. 1t is assumed that a part of
bacterial cells in the examined sample are dormant
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or present in the form of DNA traces of dead cells.
RNA sequencing permits to reveal a metabolically
active part of the microbiota. To get an insight into
a functionally active part of the microbial commu-
nity, RNA sequencing data are compared with the
data obtained by whole genome analysis [36]. The
limitations of the method include high cost, and high
risk of RNA degradation associated with improper
sample preparation and material storage. These fac-
tors affect the reproducibility of results.

Thus, molecular genetic methods of research have
become a promising approach to explore the structure
of microbial communities and their specific function-
al characteristics in health and in disease. However,
the effectiveness of research using these tools largely
depends on the right choice of a technique fit for the
goals and objectives of the study.

Metabolome studies

Short-chain fatty acids

Short-chain fatty acids (SCFAs) are the main
metabolites produced by the microbiota in the large
intestine through the fermentation of indigestible
carbohydrates such as cellulose, pectin, xylan or ara-
binogalactan [37, 38]. The most common SCFAs are
acetate, propionate, and butyrate, which differ from
each other by the number of carbon atoms (C2, C3
and C4, respectively) [15, 39, 40].

Acetate is the major end product of bacterial
breakdown of pectin, xylan and arabinogalactan
Bacterial phyla involved in the process of fermenta-
tion are: Verrucomicrobia (Akkermansia muciniph-
ila), Bacteroidetes (Bacteroides spp., Prevotella
spp.), Actinobacteria (Bifidobacterium spp.)
n Firmicutes (Ruminococcus spp., Blautia hy-
drogenotrophica, Clostridium spp., Streptococ-
cus spp.) [41, 42].

Typically, propionate is produced from arabino-
galactan through several pathways (succinate, ac-
rylate, propanediol). Microbial phyla responsible
for the formation of propionate are the following:
Bacteroidetes ( Prevotella ruminicola), Firmicutes
(Phascolarctobacterium  succinatutens,  Rumi-
nococcus flavefaciens, Roseburia inulinivorans,
Blautia Anaerostipes rhamnosivorans Lactobacil-
lus reuteri), and Proteobacteria ( Escherichia coli)
[43, 44].

Butyrate is produced mainly from starch, but ac-
etate and lactate can also serve as substrates for its
synthesis [42]. The main butyrate producing-bacteria
in the human gut belong to the phylum Firmicutes
( Ruminococcaceae, Lachnospiraceae, Clostridia-
ceae, Erysipelotrichaceae) [44].

SCFAs production ratio in the intestine is 3:1:1
for acetate, propionate, and butyrate, respectively
[37, 45]. The maximum SCFA concentration was
observed in the cecum and proximal colon. Further
down the colon, the SCFA concentration gradually
declines [42]. SCFAs are partly absorbed by colono-

cytes and the remaining part enters systemic circula-
tion [46].

SCFA receptors are a subset of G protein-cou-
pled receptors (GPCR) represented by three types
of receptors such as GPR43, GPR41 and GPR109A,
which differ from one another in their ability to in-
teract with ligands of different length. GPR43 inter-
acts with shorter SCFAs (acetate and propionate);
GPR41 does with propionate, butyrate and valerate;
GPR109A does mainly with butyrate [46, 47]. Inter-
action of propionate with GPR41 leads to inhibition
of proinglammation agents (such as IL-4, TNF-a and
other).

Activation of GPR43 by propionate increases se-
cretion of insulin, glucagon-like peptide-1 (GLP-1),
and gut hormone peptide YY (PYY). By activating
GPR109A, butyrate inhibits growth of breast tumors
facilitating apoptosis in cancer cells [47].

The available research results indicate that a suf-
ficient amount of SCFA produced by gut microbi-
ota is a requisite for maintaining normal functions
of the human body. A number of studies examined
changes of the microbiota composition and decline
in the SCFA production in diabetes mellitus, renal
disorders, cardiovascular diseases, cancer, neurode-
generative disease, and obesity [48—64]. However,
despite the potential SCFA benefits, a few studies
revealed that they have a number of negative effects.
Besides, interaction of excess acetate with GPR43
can lead to increased production of interferon gamma
(IFN-y) and IL-17 in the ureter, kidney and draining
lymph nodes while naive CD4" T cells differentiate
into Th1 and Th17 cells [65].

A. Tiroshi’s study showed that propionate also
leads to the development of hyperglycemia in
mice by increasing plasma concentrations of glu-
cagon and fatty acid-binding protein 4 (FABP4).
A randomized double-blind placebo-controlled hu-
man study revealed that consumption of canned
foods containing 1 g of calcium propionate (E282)
led to insulin-resistance and compensatory hyperin-
sulinemia [66].

Most studies of SCFA production were conducted
using animal models (rodents). However, rodents
have certain specific features concerning the compo-
sition of GI microbiota, and feeding rhythm (they
more often eat at night). These differences make the
extrapolation of animal research data to humans a
questionable issue [67].

Currently, the number of human studies inves-
tigating SCFA production is growing [51, 68, 69].
Many studies focus on measuring SCFA levels in
the blood serum and faeces in different population
groups (e.g. children, Alzheimer patients) [49, 51].
Still other research involves measuring of SCFA
levels in various body fluids and faeces along with
the analysis of the microbiota composition [68, 70].
There are also studies investigating the impact of the
diet on SCFA production. Thus, an increased content
of dietary polysaccharides such as corn and potato
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starch as well as inulin led to increases in faecal
SCFA concentrations by 32 % and 12 %, respectively
(p <0.001). In particular, butyrate was increased by
29 % and acetate, by 21 % [68].

SCFAs are commonly analyzed using gas chroma-
tography-mass spectrometry (GC-MS) or high-per-
formance liquid chromatography (HPLC). Human
faeces or, more rarely, plasma and urine are the ma-
jor samples used for analysis [68, 71]. However, an
increased faecal content of a SCFAs may indicate its’
impaired absorption rather than overproduction [49].
For this reason, blood plasma may possibly be the
best biomaterial for analysis since circulating plasma
SCFAs affect metabolic processes [69, 72].

Thus, the issues that confront researchers in the
field of SCFA level studies and need further clarifi-
cation are as follows:

- choice of an optimal biological material for
analysis;

- need for a standardized diet before the study;

- selection of an appropriate method for analysis;

- determination of reference ranges corresponding
to normal values.

Current research data indicates that acetate, pro-
pionate and butyrate are present in a stable ratio of
3:1:1. However, reference range for SCFA concentra-
tions have not been established yet [73].

Trimethylamine (TMA) and trimethylamine

oxide (TMAO)

TMA is produced in the colon by microbiota from
phosphatidylcholine (PC) and L-carnitine contained
in the products of animal origin [74—78].

TMA synthesis from choline involves specific en-
zymes such as cutC (glycyl radical enzyme GRE
choline TMA-lyase) and cutD (activator GRE ac-
tivase) [79].

These enzymes are encoded by the Cut gene clus-
ters (CutC and CutD being the key ones among
them) of intestinal bacteria belonging to the phyla
Firmicutes (Anaerococcus hydrogenalis, Clostrid-
ium asparagiforme, Clostridium hathewayi, Clos-
tridium sporogenes), Proteobacteria ( Desulfovibrio
desulfuricans, Escherichia fergusonii, Proteus pen-
neri, Providencia rettgeri, Edwardsiella Tarda),
and Actinobacteria |77, 80, 81]. The enzymes en-
coded by these genes break the C-N bond in choline
leading to the formation of TMA and acetaldehyde
[78, 81].

Carnitine oxidoreductase is the main enzyme
responsible for the conversion of L-carnitine into
TMA. It is encoded by the pair of genes CntA and
CntB, which encode carnitine oxidase and reductase,
respectively. The activity of carnitine oxireductase
is encoded by gene pair YeaW (Carnitine monooxy-
genase oxygenase subunit)/YeaX (Carnitine mono-
oxygenase reductase subunit). The main role in these
processes is attributed to to the Proteobacteria phy-
lum (Klebsiella pneumoniae, E. coli, Citrobacter,
Providencia and Shigella), the class Betaproteo-

bacteria (Achromobacter) as well as the phyla Fir-
micutes (Sporosarcina) and Actinobacteria [78].

Another pathway of L-carnitine conversion into
TMA includes two steps. First, y-butyrobetaine
(yBB) is formed from L-carnitine by L-carnitine
CoA-transferase in the ileum. Then, YBB is convert-
ed into TMA by carnitine TMA-lyase in the cecum
and colon [82, 83].

Following synthesis in the intestinal lumen, TMA
is absorbed from the intestine via passive diffusion
across the enterocyte membranes and delivered to
the liver where it is converted to trimethylamine
N-oxide (TMAQ) by hepatic flavin-containing mo-
nooxygenase 3 (FMO3) [74]. The FMOS3 activity
is regulated by bile acids via the bile-acid activat-
ed farnesoid X receptor (FXR) [84].

In addition to the pathway whereby TMA is
converted into TMAO, the latter can enter the hu-
man body directly with TMAO-rich food (seafood,
high salt and high fat diet) [85—87]. TMAQO can be
converted to TMA and the other way around since
certain bacteria (e.g. Escherichia coli) containing
TMAO-reductase [88]. Decreased concentrations
can be explained by the presence of the archaea be-
longing to the order Methanomassiliicoccales and
containing the genes encoding methyl-coenzyme M
reductase complex capable of reducing the methyl
compound of TMA and TMAO [89]. About 95 %
TMA is oxidized, and TMA metabolites as well as
unchanged TMAO are excreted in urine in the ratio
of 3:95 [78].

TMA is capable of binding to G protein-cou-
pled receptors (e.g. trace amine-associated receptor
(TAARS5)) and, thus, indirectly involved in the regu-
lation of human behaviour; TMA and TMAO levels
can be regulated by sex hormones which allows to
regard them as pheromones [78, 84].

TMA is quite rapidly absorbed into the blood
stream through the intestinal wall and delivered to
the liver where it is converted to TMAO exhibiting
a number of biological effects (see Table).

Whether positive or negative TMAO effects pre-
vail is still a matter of debate. Thus, a meta-analysis
of 19 studies involving 19256 participants showed
that TMAO plasma levels ranged from 3 to 7 umol /1.
The optimal TMAO plasma level is <10 umol/I.
Higher concentrations (>10—20 umol/1) are re-
garded as excessive and pathological [96]. The study
performed in 2019 and involving people from dif-
ferent countries investigated a possible correlation
between an increased death probability and elevated
TMAO levels. It was revealed that there is a dose-
dependent correlation between the level of mortality
risk and TMAO plasma level. The analysis showed
that the risk of mortality increased by 7.6 % per each
10 umol /1 increment of TMAO [75]. It was also dis-
cussed whether high TMAO plasma levels are relat-
ed to the development of such diseases as psoriasis,
atherosclerosis, diabetes mellitus, and osteoporosis.
However, not all studies reported a cause-and-effect
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relationship between high TMAO levels and these
disorders. Therefore, many researchers have been
wondering whether it’s a cause or a marker of cer-
tain diseases [85—87, 94, 95, 97—99]. Furthermore,
the results of some studies are conflicting and do not
allow to make a definite conclusion that TMAO has
negative effects. Thus, the intake of L-carnitine led
to increased TMAO level and reduced vessel wall
damage in hemodialysis patients [76]. Yin obtained
data for patients who had an acute cerebrovascular
accident, and transitory ischemic attack. These pa-
tients had lower TMAO levels than patients without
these disorders though the current concept suggests
just the opposite [100].

Many researchers think that it would make sense
to modify the diet by reducing consumption of the
products containing TMA and TMAO. However,
choline leads to decreased neonatal stress and im-
proves placental functioning during pregnancy as
well as exerts a positive effect on cognitive function
in adults without dementia [77]. Furthermore, the
available data indicate that choline in the form of
phosphatidylcholine does not increase serum TMAO
levels [101]. Besides, choline deficiency can lead to
impaired DNA methylation and hepatocellular carci-
noma development [102]. Elevated TMAO levels are
frequently observed in patients with chronic kidney
disease, but it is not quite clear whether TMAO is a
marker or a cause of filtering disorders [79, 103]. In
Japan consumption of fish containing large amounts
of TMAO is associated with increased urinary TMAO
observed in the local long-livers. If elevated TMAO
levels were linked with increased risk of cardiovas-
cular disease (CVD), a diet rich in fish should have
been associated with high CVD risk. However, it is
not in this case since there are lots of evidence that
high fish intake is beneficial to the cardiovascular
system [76, 78].

TMAO level can be measured in the urine, blood
and faeces. Liquid chromatography and high-resolu-
tion mass spectrometry are the most common tools
used for this purpose. However, preparation of an

Table. Biological Effects of TMAO

appropriate substrate for HRMS is an extremely
complex task [104]. Besides HRMS, procedures ap-
plied for measurement of TMA and TMAO in the
plasma and urine include proton nuclear magnetic
resonance spectroscopy, gas chromatography, ioniza-
tion mass spectrometry and matrix-assisted laser de-
sorption/ionization mass spectrometry [79].

However, it is still unclear whether elevated
TMAO concentrations associated with certain disor-
ders result from cellular adaptation to stress and,
hence, can serve as a marker and prognostic indica-
tor for a particular disease, or it can be regarded as
one of the causes of a fairly large number of diseases
[105, 106].

Intestinal gas production studies:
hydrogen, methane and hydrogen
sulfide

Intestinal gases reflecting the composition and
functional potential of gut microbiota such as hy-
drogen (H,), methane (CH ,) and hydrogen sulphide
(H,S) are partly absorbed from the intestine into
the blood and then excreted with exhaled air which
makes it possible to measure their concentrations and
obtain indirect data on the gut microbiota composi-
tion.

Hydrogen

A molecule of hydrogen is composed of two hy-
drogen atoms. It is non-polar and electrically neu-
tral. Hydrogen molecules easily penetrate inside in-
tracellular structures (mitochondria, nucleus, etc.)
and pass through the blood-brain barrier (BBB).

Hydrogen accounts for about 19 to 20 % of all
gases produced in the colon [107] while its produc-
tion rate is 100-fold higher than that in the small
intestine [108].

According to modern views, the cells of mammals
including humans are incapable of producing molec-
ular hydrogen [108, 109]. It is assumed that intesti-

Positive effects

Negative effects

Maintenance of cell volume (osmolyte) [76, 78, 90]

Reduction of bile acid synthesis, diminished excretion
of cholesterol from the body [77, 79, 90, 91]

Reduction of endoplasmic reticulum stress [77, 85]

High concentrations of TMAO enhance platelet
aggregation [83, 92, 93]

Provide protection from prion diseases [77, 85]

Proinflammatory effect due to increased expression
of proinflammatory cytokines and proinflammatory
pathway activation [76, 90]

Stabilization of protein structure (chaperon function)
[77]

Endothelial dysfunction [90, 94]

Decreased activity of the MAPK/ERK and NF-kB
pathways [90]

Increased virulence of Helicobacter pylori due to
enhanced expression of the CagA virulence genes [86]

Increased permeability of the blood brain barrier (BBB)
92

Neurodegeneration [95]
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nal hydrogen is produced primarily by such bacteria
as Ruminococcus spp., Roseburia spp., Clostridium
spp. belonging to the phylum Firmicutes; Bacte-
roides spp belonging to the phylum Bacteroidetes
[110, 111]. Furthermore, over 200 pathogenic organ-
isms have the ability to synthesize hydrogen [112].
Inclusion of non-digestible carbohydrates in the diet
leads to increased hydrogen production by the gut
microbiota [108, 110, 111, 113]. However, this in-
crease is not accompanied with a growing share of
hydrogen-producing microorganisms while a high
positive correlation was found between the hydro-
gen production and the amount of Bifidobacteriales
(phylum Actinobacteria) not involved in the hydro-
gen synthesis [114].

The results of rodent studies revealed a signifi-
cant difference between the amount of hydrogen pro-
duced by gut microbiota of experimental rats from
different colonies on the background of the equal
intake of dietary fiber. Thus, portal blood hydrogen
concentration in the first group of rats amounted to
1.54 umol /1 versus 17.4 umol /1 in the second group.
Per oral transplantation of rat colonic microbiota
with high H, production to the low H,-generating
animals of the first group led to an increase of the
H, concentration in the portal vein from 3.07 to
9.95 umol/1 as well as a growing number of bacteria
belonging to the genera Bifidobacterium (phylum
Actinobacteria), Allobaculum (phylum Firmicutes)
and Parabacteroides (phylum Bacteroidetes). At
the same time, there was a decrease in the levels of
Bacteroides (phylum Bacteroidetes), Ruminococ-
cus (phylum Firmicutes) and Escherichia (phylum
Proteobacteria) [114]. The Bifidobacterium cannot
produce hydrogen since they lack hydrogenase. The
authors assume that Bifidobacterium generate ac-
etate and lactate while metabolizing dietary fiber.
Lactate is utilized by other bacteria producing ace-
tate and butyrate. Therefore, while Bifidobacterium
themselves do not produce H,, a 50 % increase in
their number following the transplantation can facil-
itate higher H, generation by other bacteria. Similar
results were obtained by Japanese researchers in the
studies involving human subjects [115]. The mecha-
nisms and exact type of relationship between an in-
creased H, generation under the impact of dietary
fiber and growth of certain bacterial species still re-
main unclear and require further research.

Research findings substantiating the antioxidant
activity of hydrogen in biological models were pub-
lished in 2007 [116].

Subsequent studies showed that hydrogen pro-
tects the brain during cerebral ischemia/reperfusion
and stroke [117]; antiatherosclerotic H, effect was
also demonstrated in the experiments on mice [118];
cardioprotective H, effect was seen in a myocardial
ischemia/reperfusion model [119]. Still other re-
searchers observed anti-stress effect of high hydro-
gen concentrations in the experiments on lab mice
[120] as well as protective hydrogen effect in pulmo-

nary hypertension models [121, 122]. Furthermore,
the obtained evidence shows that hydrogen has an
impact on signalling pathways whereby information
is transmitted across the cell membrane as well as
exerts cytoprotection, and decreases the synthesis of
proinflammatory cytokines and apoptosis [123—125].
Subsequent clinical trials undertaken to test the an-
tioxidant properties of H, largely confirmed the re-
sults of previous experimental studies on animals.
Thus, researchers corroborated cardioprotective and
neuroprotective effects of H, [126—130] as well as a
positive hydrogen effect on endothelial dysfunction
[131, 132]. H,-enriched dialysis solution improved
the prognosis of both hemodialysis and peritoneal
dialysis patients by decreasing the development of
fibrosis [133—135].

On the one hand, the discovery of positive ef-
fects of molecular hydrogen led to an increase in the
number of studies investigating exogenous hydro-
gen effects and, on the other, revived interest to the
analysis of effects of endogenous hydrogen produced
by gut microbiota.

There is a linear correlation between the hydro-
gen intestinal production rate and its concentration
in exhaled breath: from 21 % to 65 % of hydrogen
produced in the gut is absorbed into the blood and ex-
creted through lungs which provides a sufficient basis
for using a hydrogen breath test to assess the level of
gas production by gut microbiota [108, 136, 137].

Hydrogen concentration in exhaled air is mea-
sured to determine GI transit time, diagnose small
bowel bacterial overgrowth syndrome, lactase insuf-
ficiency, and carbohydrate intolerance (fructose, ga-
lactose, sorbitol) [138—141]. However, a large data
spread is observed in most studies. This variability
does not allow to draw conclusions about reference
ranges for breath hydrogen concentrations in healthy
subjects [142]. A number of current studies are at-
tempting to provide a sufficient basis for the devel-
opment of clinical guidelines with a view to stan-
dardize hydrogen breath testing and interpretation of
test results in clinical conditions [143, 144].

Thus, further studies investigating the relation-
ships between the gut microbiota composition and
hydrogen concentration in the expired air as well
as development and standardization of methods for
measuring breath hydrogen levels in healthy subjects
and patients with different diseases appear to be
rather a promising line of research.

For example, researchers from Moscow State
University (Faculty of Chemistry) jointly with their
colleagues from IRZ-Locomotiv LLC (affiliated com-
pany of Izhevsky Radiozavod JSC) are currently
working on the research project entitled “Develop-
ment of a method for measuring hydrogen concentra-
tion in exhaled breath using semiconducting metal
oxide-based sensors”. This method will be used to
design a hydrogen analyzer in two versions: a porta-
ble analyzer for home use and a professional version
for healthcare professionals.
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Methane

Methanobrevibacter smithii and Methanos-
phaera stadtmanae are the main methane producers
in human colon. Their number increases all along
the colon until reaching a maximal value in the
rectum [145]. Methanobrevibacter smithii use hy-
drogen to reduce CO, to methane whereas Metha-
nosphaera stadtmanae use hydrogen for reduction
of methanol to methane [146, 147]. Four hydrogen
molecules and one CO, molecule are required to syn-
thesize one molecule of methane.

The number of methanogens in the gut microbiota
changes with age. Typically, the gut microbiota of
children has a low content of methanogens children’s
microbiota (10°—10% CFU /1 g of faeces) [147—149].
The share methanogens grows with age reaching 60
to 80 % of the total GIT microbial population in the
age group 80—90 [150—153].

Differences in breath methane concentrations can
be associated with the diet, geography and a num-
ber of other factors. For example, patients who had
undergone appendectomy had decreased levels of ex-
haled methane. Presumably, this finding is explained
by the fact that the appendix may serve as a reser-
voir for methanogens [154]. Increased exhaled meth-
ane concentrations exceeding the background level
were observed only in 15 % of Japan’s population
while Methanobrevibacter smithii were found just
in 8 % of the Japanese [155]. A comparative study
of exhaled methane levels in Native Africans versus
American Africans showed that the latter have much
lower exhaled methane levels and a substantially
smaller proportion of methanogens in the gut micro-
biota [156, 157]. These findings suggest that dietary
patters may have an impact on the composition of
gut microbiota.

On the whole, studies revealed significant differ-
ences in breath methane levels and it was deemed
expedient to single out two distinct groups of sub-
jects, i.e. with high and low breath methane levels,
respectively. The first group is made up by the in-
dividuals whose breath methane concentration is 4
ppm or higher and exceeds the atmospheric methane
concentration by 1 ppm; the second group includ-
ed subjects with the breath methane levels below
3 ppm [151]. High breath methane concentration
indicates the presence of methanogens enumerated
at the order of 100 CFU per 1 g of faeces which
corresponds to a 0.03 to 0.3 % of the whole gut
microbiota [158, 159]. High concentration of meth-
anogens in the colonic microbiota and elevated con-
centration of hydrogen in exhaled air are associated
with a higher body mass index and visceral fat per-
centage [160, 161]. The latter is a more significant
risk factor for metabolic disorders and heart disease
than body mass index or waist circumference [162,
163]. Furthermore, increased breath methane con-
centration has a direct positive correlation with the
severity of constipation, and negative correlation

with diarrhoea severity in patients with irritable
bowel syndrome [143, 164]. However, according to
the data obtained by Singh et al, correlation with
the severity of constipation is observed only at high
methane baseline concentrations of 10, 20 ppm or
higher (p < 0.001) [165].

Methane concentration in exhaled air is normally
measured using a methane breath test. However, test
administration is complicated by the lack of stan-
dardized procedures as well as the fact that metha-
nogenic bacteria are present not only in the colonic
microbial population but also in the oral microbiota
[166, 167].

Thus, currently available data do not allow to
make unambiguous conclusions about the feasibil-
ity of using methane concentration measurement in
exhaled air for diagnostic purposes. Further studies
are required to investigate relationships linking the
concentration of methanogenic bacteria in the gut
microbiota to the factors determining methane con-
centration in exhaled air as well as to the altered
methane production levels seen in certain diseases.

Hydrogen sulphide (H,S)

Hydrogen sulphide (H,S) formed through bacte-
rial breakdown of proteins and other sulphur-con-
taining substances can also serve as a biomarker of
the gut microbiota composition. However, in con-
trast to hydrogen and methane, hydrogen sulphide
is synthesized not only by the microbiota, but also
somatic cells of the host organism. For this reason,
it is a less specific marker of the GI microbiome
composition.

Sulfur present in the human body is obtained
from dietary animal and plant-based proteins as well
as from drinking water containing inorganic sulfur
compounds [168]. Dietary proteins and peptides,
that remain undigested in the small intestine by pro-
teases and peptidases, reach the colon and constitute
a source of sulfur-containing amino acids [169]. Be-
sides, there are endogenous sulfur-containing glyco-
proteins with a molecular mass of about 2.5 MDa,
which serve as a main component of gel-forming
MUC2 mucin [170].

Sulfate-reducing bacteria (SRB) belong to the
phyla Protobacteria (Escherichia, Desulfovibrio,
Klebsiella, Salmonella, Enterobacter), Fusobac-
teria (Fusobacterium), Firmicutes (Clostridium,
Streptococcus) [171]; they have the ability to syn-
thesize H,S from methionine, cysteine and taurine
[172]. These bacteria are found in the human gut mi-
crobiota in 15 % of children and 50 to 60 % of adults
[159, 173]. Similarly to methanogenic bacteria, sul-
fate-reducing bacteria use hydrogen to synthesize the
end product. Synthesis of one H,S molecule involves
five hydrogen molecules [174]. SCFAs represent the
main source of carbon for most sulfate-reducing bac-
teria: 14.1 %, 9 %, and 9 % is provided by acetate,
propionate, and butyrate, respectively; and lactate
serves as a major substrate for 63 % of SRB.
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In human tissues endogenous H,S synthesis in-
volves three main enzymes: cystathionine B-synthase
(CBS), cystathionine y-lyase (CSE) and 3-mercapto-
pyruvate sulfurtransferase (3-MST) [175, 176]. Two
vitamin B, — dependent enzymes, CBS and CSE,
are localized in the cytosol whereas 3-MST resides
both in the cytosol and mitochondria. All enzymes
involved in H,S synthesis were found in most human
organs and tissues including vascular and pulmonary
endothelium, smooth muscle cells, adipose tissue,
brain, heart and lungs [177, 178].

Flannigan et al. studied the relative propor-
tion between the amount of H,S synthesized by
sulfate-reducing bacteria residing in the gut and
by somatic cells of the host organism. It was
shown that the amount of H,S in the faecal mate-
rial of germ-free mice was two-fold lower than in
the animals with normal gut microbiota. The diet
devoid of vitamin B, a cofactor for the two key
enzymes involved in tissue H,S synthesis, led to
a 50 %-decrease in the amount of the synthesized
H,S. The authors came to the conclusion that so-
matic cells and sulfate-reducing bacteria produce
equal amounts of H,S [179].

Further studies examined plasma free H,S lev-
els in various organs as well as in germ-free mice
versus conventional mice. It was demonstrated that
plasma H.S concentration of germ-free mice was 2.5-
fold lower as compared with regular mice [180]. The
largest differences in free H,S levels between the two
groups of mice were seen in the GI tissues while the
H,S levels in the lung tissue were the same. Since
blood H,S concentration is a major factor determin-
ing its diffusion into the alveolar air, it can be as-
sumed that the values obtained by measuring the
H,S level in exhaled air would largely reflect the
activity of sulfate-reducing bacteria.

Recently, researches into H,S involvement in the
regulation of inflammation and oxidative stress as
well as infectious and oncological diseases have been
attracting much interest [177, 178, 181]. Hydrogen
sulphide produced by aerobic and anaerobic bacteria
in the oral cavity can be responsible for periodontitis
and halitosis [182, 183].

There are multiple methods for measuring hy-
drogen sulphide concentrations in exhaled air
described in the literature: carbon nanotubes,
fluorescent probes, high-performance liquid chro-
matograpy, etc.

The fact that H,S is produced both by the human
gut microbiota and somatic cells makes it a less spe-
cific biomarker of the gut microbial enzyme activity.
Apparently, due to its low concentration in the intes-
tinal lumen, H,S plays a very small role in utilizing
hydrogen as compared with methane. Nonetheless,
H,S studies examining it both as a biomarker and
a substance involved in the regulation of multiple
metabolic pathways, oxidative stress, and mitochon-
drial functions appear to be very promising lines of
future research in this area.

Conclusions

Modern studies of the gut microbiota have clearly
demonstrated and made it increasingly apparent that
the role of a microbial consortium predominates over
specific functions of individual bacterial species.

Despite the fact that currently molecular genetic
methods are mostly employed in fundamental re-
search and lack a unified protocol for data analysis,
there is a tendency to transfer these techniques in
clinical practice.

Measurement of SCFA concentrations (acetate,
propionate and butyrate) in plasma provides the
data, which can serve as an indirect biomarker of
the colonic microbiota composition. However, cur-
rently available evidence is insufficient to relate the
obtained values (SCFA levels and ratio) to a particu-
lar disease with a high degree of certainty. TMAO
levels in the blood plasma and urine can also reflect
the presence of specific bacterial clusters containing
genes Cut, CntA/CntB and YeaW/YeaX. There-
fore, further studies are required to reveal possible
correlations between certain disorders and such pa-
rameters as the composition of gut microbiota, di-
etary patterns and TMAO concentration.

Gas biomarkers, i.e. hydrogen, methane and hy-
drogen sulphide, have been studied in more detail
and are better understood as compared to other bio-
markers of the gut microbiome composition and func-
tionality. The main advantage of gas biomarkers is
that they can be measured multiple times using non-
invasive techniques. These measurements provide in-
formation on the relative proportion of hydrogenic
(i.e. hydrogen producing) and hydrogenotrophic (i.e.
methanogenic and sulfate-reducing) microorganisms.
In its turn, this opens up the possibility of develop-
ing new approaches to correction of individual mi-
crobiota components.

Integration of the data obtained by gut micro-
biota studies would allow a more comprehensive
analysis of microbial community function and its in-
teraction with the human organism. This approach
appears to be very promising and may increase our
knowledge and understanding of the pathogenesis of
various diseases as well open up new opportunities
for prevention and treatment of these disorders.
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