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Aim: to provide information on the results of recent scientific research in the field of non-alcoholic fatty liver
disease (NAFLD) metabolomic profiling.

Key points. Metabolites of microbial origin are important biological molecules involved in many specific reactions of
the human body. This literature review presents the results of recent studies in the field of metabolomics in patients
with NAFLD. A more detailed understanding of the role of individual metabolites or their combinations in the NAFLD
pathogenesis will allow us to determine the vector of further diagnostic and therapeutic approaches for this nosology.
The research results of the probiotics effect on the levels of certain metabolites are currently being discussed.
Conclusion. New research data in the field of studying the human metabolomic profile are presented. The results
allow us to summarize the effects of microbial agents and their metabolites in the formation of changes in the liver
parenchyma in the context of NAFLD. Changes in the level of endogenous ethanol, secondary bile acids, aromatic
amino acids, branched chain amino acids, etc. have been described. Correlation between metabolites and certain
bacterial strains has been established. A correlation between the ratio of bacteria types and clinical/laboratory
parameters was noted in patients taking prebiotics.
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Posnb Kknwie4yHo MUKpOOMOTbI U ee MeTaboJIMTOB B NaToOreHe3e HeaJIkoroJibHom
>XXUPOBOI 00NIe3HN NeYeHun

M.C. PeweToBa*, O.10. 3onbHukosa, B.T. MiBawukuH, K.B. MBawkuH, C.A. AnnonoHosa, T.J1. JlTanuHa
DrAQY BO «[lNepsbiti MOCKOBCKUIA rocyaapCTBEHHbI MEeANLIMHCKMIA yHuBepceuTeT um. U.M. CeveHoBa» (Ce4eHOBCKu YHUBEpPCUTET)
MuHucTepcTBa 3apaBooxpaHeHvsi Poccuiickori Peaepaummn, Mocksa, Poccuiickas Penepaumsi

Llenb 0630pa: npenctaBuTb MHGOPMaLMIO O pedynbTaTax NOCNeaHMX Hay4YHbIX MCCeaoBaHuin B ob6nacti metabo-
JIOMHOI0 NPOMUINPOBaHMS NPU HEANTIKOT0IbHOW XMPoBo 6onesHn neveHn (HAXKBIT)

OCHOBHbI€ MOJIOXeHUNA. MeTabonnTbl MUKPOOHOIO MPOUCXOXAEHUS SBASIOTCS BAaXXHbIMW OMONOrMYeCcKUMN MO-
JIeKyniamMu, y4acTBYIOLLMMM BO MHOMMX cheun@unyecknx peakumax opraHmama yenoseka. B gpaHHoM o63ope nuTte-
paTypbl NpeAcTaBfieHbl pe3yfbTaTbl MOCNeOHNX UCCenoBaHnin B o6nactn metabonomukn y naumeHto ¢ HAXKBI.
Bonee petanbHoe NOHMMaHWE PO OTAENbHO B3SITbIX METAO0NNTOB UK Xe X COBOKYMNHOCTM B naToreHe3de HAXKBI
NMO3BOJIUT OMPEAENNTb BEKTOP AAJIbHENLLINX OUArHOCTUYECKUX 1 TePaneBTUYECKMX NOOXOA0B A 3TO HO30J10TUN.
O6cyxpatoTcs pedysibTaTbl UCCNEeAoBaHU BANSHUS NPOOMOTUKOB Ha YPOBEHb TEX UM UHbLIX METab0NNTOB.
3aknoyeHue. NpencraBneHbl HOBblE AaHHbIE UCCef0BaHMIN B 06/1aCTU U3y4yeHUss MeTabonoMHOro Npoduns ye-
noBeka. Pe3ynbraTbl NO3BOMSAIOT CYMMUPOBaTh 3PP EKTbl MUKPOOHbLIX areHTOB 1 MX MeTabonnMToB B npoLiecce dhop-
MUPOBaHNSA M3MEHEHN MNapeHXMbl nedeHn B pamkax HAXEI. OnvcaHbl UBMeHeHUs YPOBHS SHAOMeHHOro aTaHoNa,
BTOPUYHBIX XENYHbIX KMCOT, apOMaTUYECKMX aMUHOKMCIIOT, aMUHOKNCIIOT C Pa3BETBJIEHHOM Lienblo 1 np. Boiaene-
Ha Koppensaumus MeTabonnMToB C onpeneneHHbiMu WtaMmmMammn 6aktepuii. Ha poHe nprema npobroTMKOB OTMeYeHa
KOPPENsLMs COOTHOLLIEHMS TUMOB BakTepUii U KIIMHUKO-N1abopaTopHbIX NokasaTenen y naumeHTOoB.

KnioueBble cnoBa: metabonnTbl, MeETaboIOMHOE NpoduUnMpoBaHme, GromMapkepbl, MacC-CneKkTPOMEeTPUs, XUA-
KOCTHasi xpoMaTtorpadus, HeankoroJibHasi XX1upoBasi 60/1e3Hb NeYeHN

KOoHPNUKT nHTepecoB: aBTOPbI 3a89BAAIOT 00 OTCYTCTBUM KOHPIMKTA UHTEPECOB.
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Introduction

The interactions between the microbiota and the
human organism are highly dynamic and complex.
The microbiota has an extensive metabolic activity
that includes unique reactions which are not cata-
lyzed by human cells but necessary for human life
[1—7]. Microbial-derived metabolites are potential-
ly important compounds that mediate a cross-talk
between the microbiota and the host, both in relation
to maintaining health, and in various diseases [2—6].
These molecular “profiles” carry unique information
that can act as prognostic and diagnostic markers,
as well as be a guide to the effectiveness of therapy.
The major known classes of metabolites produced
and transformed by the gut microbiota with known
effects on human physiology include organic acids,
short chain fatty acids, lipids, BCFAs (Branched
chain fatty acids), BCAAs (Branched-chain ami-
no acids), vitamins, bile acids, neurotransmitters
[2, 8, 9]. The subtle interaction between microbiota
metabolites, the microbiota itself and the host is me-
diated through a wide range of signaling pathways.
They extend beyond the gut and form so-called func-
tional axes (namely gut-brain axis, the gut-lung axis,
the gut-heart axis, gut-liver axis).

Changes in the gut microbiota
composition

There is a strong correlation between the diversity
of the gut microbiota and the development of certain
diseases, including non-alcoholic fatty liver disease
(NAFLD) and non-alcoholic steatohepatitis (NASH).
The gut microbiota and its metabolites are involved
in host metabolism through a range of cellular re-
ceptors and signaling pathways, remodeling liver
cell metabolism through the gut-liver axis. Bacterial
metabolites (short-chain fatty acids, secondary bile
acids, protein fermentation products, choline, and
ethanol), as well as bacterial components (lipopoly-
saccharides, peptidoglycans, bacterial DNA) are im-
portant factors in the pathogenesis of NAFLD [10].

A change has been established in patients with
NAFLD and obese individuals at the level of phylum,
namely there is a decrease in the content of Firmicutes
(mainly due to a decrease in Lachnospiraceae and
Ruminococcacea) and an increase in Bacteroidetes
and Proteobacteria, the latter have a pronounced
pro-inflammatory potential [11]. Thus, in a study
by L. Zhu in patients with NASH and obese
persons without NASH, in comparison with a
healthy group, a higher content of Bacteroidetes

(mainly  Prevotellaceae) and  Proteobacteria
(Enterobacteriaceae) and a significant decrease
in the content of Firmicutes (Lachnospiraceae,
Blautia,  Ruminococcaceae,  Faecalibacterium)
and Actinobacteria (Bifidobacteriaceae). The
Proteobacteria (Enterobacteriaceae) content dif-
fered significantly between patients with NASH and
obese patients without NASH. At the same time,
only in patients with NASH, the ethanol concen-
tration in the blood was higher [12]. In children
with NAFLD, in the intestinal microbiota com-
position, along with an increase in the proportion
of Gammaproteobacteria (Proteobacteria) and
Prevotella (Bacteroidetes) in the feces, the bacterial
metabolites content changed. And the ethanol con-
centration increased. The concentration of acetate,
formate, and valerate decreased, while the content of
butyrate and propionate practically did not change
[13]. It is assumed that with the progression of
NAFLD to NASH, the proportion of Bacteroidetes,
Firmicutes and Proteobacteria types does not change
significantly. But changes are observed within the
Bacteroidetes type: the Prevotellaceae proportion
decreases, while the Bacteroidaceae proportion in-
creases [14].

In patients with NAFLD, altered microbiota com-
position mediates the development of increased intes-
tinal permeability. Levels of calprotectin, bacterial
lipopolysaccharide (LPS) and zonulin-1 are higher
in patients with NAFLD than in healthy volunteers.
The gut microbiota profile (significant reduction in
Akkermansia and Bifidobacterium) correlated with
the level of systemic inflammatory response, increas-
ing in patients with NAFLD and cirrhosis; elevat-
ed LPS concentration correlated with the insulin
resistance severity in these patients. It has been
established that bacterial endotoxemia, which de-
velops during dysbiosis, increases the risk of devel-
oping NAFLD due to the activation of inflammatory
liver cells. Bacterial endotoxins have high affinity
for toll-like receptors (TLRs), located on hepato-
cytes, and Kupffer cells and liver stellate cells. LPS,
by activating TLR4, initiates a cascade of reactions
involving the nuclear transcription factor (NF-«B)
and subsequent activation of inflammasomes with
the secretion of pro-inflammatory cytokines such as
Interleukin-1p (IL-1p) and interleukin-18 (IL-18)
[16]. In addition, endotoxins can directly damage
hepatocytes and activate Kupffer cells, promot-
ing the release of inflammatory cytokines and the
development of oxidative stress [17—19].

Separate studies have shown that a signifi-
cant role in the transformation of steatosis into
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steatohepatitis belongs to excessive bacterial growth
in the small intestine, which is detected in 50—75 %
of patients [20—24]. Small intestine bacterial over-
growth (SIBO) is accompanied by an increase in the
production of the pro-inflammatory cytokine (TNF-a)
by adipose tissue, an increase in the concentration of
free fatty acids (FFA). FFA have a directly dam-
aging effect on hepatocyte membranes and activate
cytochrome P450 with an increase in lipid perox-
idation and reactive oxygen species accumulation
[25—28].

Changes in fatty acid metabolism

Study of germ-free mice showed that the micro-
biota can promote enhanced triglyceride synthesis
and increased fatty acid accumulation in liver cells
[29]. There is an increase in the content of saturat-
ed and monounsaturated fatty acids. Changes in the
content of omega-3 (n-3) and omega-6 (n-6) long-
chain polyunsaturated fatty acids (PUFAs) were
found, which are key lipid components necessary
for the growth and organism development. Omega-3
and omega-6 are recognized as bioactive molecules
of membrane phospholipids, substrates for the eico-
sanoids synthesis and gene expression modulators.
They also play a key role in inflammatory processes.
It is known that omega-6 PUFAs induce inflamma-
tion, while omega-3 PUFAs have the ability to mod-
ulate inflammatory activity [30]. The ratio of these
PUFAs (omega-6/0omega-3) is important for the an-
ti-inflammatory activity implementation of omega-3
PUFAs [31]. Levels of omega-3 PUFAs (eicosapen-
taenoic, docosahexaenoic and arachidonic acids) are
reduced more in patients with steatohepatitis than
in those with NAFLD [32]. Several studies have
demonstrated omega-3 PUFAs deficiency, as well
as an altered omega-6/omega-3 ratio [33, 34]. With
such changes in the omega-6 and omega-3 PUFAs
metabolism, the synthesis of pro-inflammatory lipid
mediators is activated, namely eicosanoids (prosta-
glandins, cyclopentenones, thromboxane A2, leukot-
rienes) and the process of switching the synthesis of
eicosanoids to the formation of mediators involved
in the inflammation resolution (resolvins, protectins,
maresins, lipoxins) [35].

A number of studies have found that a high-fat
diet alters the gut microbiota and causes gut bacte-
ria to convert dietary choline into the hepatotoxic
methylamine, reducing choline bioavailability. This
contributes to a change in the synthesis of very
low-density lipoproteins (VLDL), which transport
fat to adipocytes, thereby increasing the risk of de-
veloping steatosis [36, 37].

During fermentation in the colon, bacteria (pri-
marily Bacteroides and Firmicutes) break down
dietary fiber into short-chain fatty acids (SCFAs),
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branched-chain fatty acids and gases (hydrogen, car-
bon dioxide, and methane). SCFAs formed as a re-
sult of microbial fermentation are monocarboxylic
acids with a chain length of up to 8 carbon atoms,
including acetic, propionic, butyric acids and their
isoforms. During the day, more than 300 mmol /L
SCFAs are synthesized. The maximum concentration
of SCFAs is formed in the caecum and ascending
colon, reaching 70—140 mmol/L. In these sections
of the intestine, there are more substrates for bac-
terial metabolism, despite the lower number of bac-
teria themselves compared to the descending and
sigmoid colon, where the SCFAs content decreases
to 20—70 mmol /L. Systemic SCFAs concentrations
depend on both production and absorption rates in
the gut, which in turn are related to dietary pat-
terns and microbiota composition. SCFAs ratio
(acetate:propionate:butyrate) of 60:20:18 is charac-
terized as optimal [38, 39].

SCFAs exist in the colon lumen in the form of a
non-ionized acids or as a fatty acid anions, due to
this fact they are highly soluble in water and easily
penetrate through the mucus layer and glycocalyx
to the apical membrane of colonocytes. SCFAs —
acetate, propionate and butyrate act as quorum-mol-
ecules of various vital physiological responses of the
body, being the most important systemic regulators.
Currently, three G-protein receptors are known to
interact with SCFAs: GPR41 (FFAR3), GPR43
(FFAR2), GPR109A [40, 41].

Butyrate interacts mostly with the GPR41 and
GPR109A receptors, while acetate and propionate
have affinity for GPR43 [42]. Interaction with these
receptors determines a number of physiological func-
tions that are most important for the human body,
including the reactive oxygen species production,
neutrophil chemotaxis, and T-regulatory cells modu-
lation [43]. It is noteworthy that GPR41 and GPR43
are also expressed in human white adipose tissue,
skeletal muscle, and liver, which indicates the pos-
sibility of SCFAs influence on substrate and energy
metabolism directly in peripheral tissues [44—46].

Each SCFA, including their isomers, is pro-
duced by a specific type of anaerobic bacteria. They
are then distributed systemically and used either
to provide energy to colonocytes or as signaling
molecules, facilitating the activation and maturation
of immune cells [47]. Therefore, a change in the com-
position and/or functional activity of the microbiota,
which leads to a change in the ratio and amount
of SCFAs, can have negative consequences for hu-
man health. This can contribute both to impaired
intestinal permeability and the development of im-
munological intolerance. SCFAs affect the prolifer-
ation of enterocytes, lower the pH in the intestinal
lumen, participate in the renewal of the intestinal
epithelium (butyrate), stimulate the development
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of hepatocytes (propionate) and peripheral tissues
(acetate), and affect the absorption of calcium and
magnesium in the colon. By lowering the pH in the
intestinal lumen, SCFAs thereby limit the growth
of pathogenic microorganisms. Bifidobacterium ac-
etate production was found to inhibit the growth
of enteropathogens in mice [48]. Moreover, in vitro
and in vivo studies have shown that high levels of
butyrate are associated with increased mucin pro-
duction and decreased bacterial adhesion, as well as
improved epithelial integrity [49,50]. Experimental
studies have established the role of butyrate in the
regulation of the transcription factor FOXP3, which
acts as a regulator of the development and immune
response cells (Treg) activity [51].

The effect of SCFAs on energy homeostasis is
controversial and requires thorough study. On the
one hand, it is hypothesized that the gut microbiota
allows the host to obtain additional energy, mainly
through the SCFAs production from indigestible car-
bohydrates. Obesity studies have shown an increased
Firmicutes to Bacteroidetes ratio, which has been
associated with high caecal concentrations of acetate
and butyrate or acetate and propionate compared
with controls [52—57]. At the same time, there are
a large number of studies indicating that SCFAs
therapy can reduce or reverse the development of
the dominant risk factors for NAFLD (weight gain
and obesity) [58—65]. For example, in obese mice,
oral administration of sodium butyrate leads to
weight loss by increasing energy expenditure and fat
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Fig. Microbial metobolites in NAFLD pathogenesis. Endogenous ethanol damages tight junctions; increases
the permeability of the intestinal mucosa, and exacerbates endotoxemia. In the liver, ethanol is oxidized
to acetate and promotes the reactive oxygen species synthesis. Bacterial endotoxins directly or through
TLRA4 activation of hepatocytes and Kupffer cells activate IL-18 and 1L-18. The microbiota affects the
amount and ratio of primary and secondary bile acids. SCFAs affect pH, mucin production, epithelial
integrity, and others. SCFAs are involved in the activation of GLP-1 and PYY. Aromatic (Indolepro-
pionic) acid interacts with PXR and NF-xB to reduce the production of pro-inflammatory cytokines in
the gut. Aromatic (Phenylacetic) acid increases BCAA utilization and leads to lipid accumulation in the
liver. TMA, formed by the gut microbiota, is converted to TMAOQO in the liver and indirectly leads to the
activation of inflammation.

Note: alcohol dehydrogenases (ADH), reactive oxygen species (ROS), lipopolysaccharides (LPS), mucin
2 (MUC2), Toll-like receptor (TLRs), transcription nuclear factor kappa B (NF-xB), short-chain fatty
acids (SCFAs), G protein-coupled receptor (GPR), glucagon-like peptide-1 (GLP-1), peptide YY (PYY),
pregnane X receptor (PXR), phenylacetic acid (PAA), branched-chain amino acids (BCAA), flavin-containing
monooxygenase (FMO)
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oxidation [58]. In addition, administration of ace-
tate, propionate, and butyrate to mice fed a high-fat
diet reduced the animals’ body weight and improved
insulin sensitivity without altering food intake or
physical activity levels [59]. It has been shown that
a diet high in dietary fiber, which promotes SCFAs
production, reduced the effects of hepatic steatosis
by limiting the accumulation of intrahepatic lipids
and restored insulin resistance in obese mice [60—63].

It is known that SCFAs can increase energy
expenditure, stimulate the production of satiety
hormones and influence the central regulation of
appetite, preventing the development of obesity. One
of the mechanisms underlying the effect of SCFAs on
food intake is associated with the release of gluca-
gon-like peptide-1 (GLP-1) and peptide YY (PYY)
[64]. These proteins are secreted by intestinal en-
teroendocrine L-cells, which are found most densely
in the epithelium of the ileum and colon. PYY and
GLP-1 influence appetite and satiety by downregu-
lating neuropeptide Y (NPY) and activating proop-
iomelanocortin (POMC) neurons in the arcuate nu-
cleus of the hypothalamus (ARC) and/or delaying
gastric emptying [65, 66]. A study in mice has shown
that acetate can cross the blood-brain barrier and be
metabolized in the brain [66], affecting the central
regulation of appetite.

It has been established that SCFAs control energy
consumption by leptin stimulation [67]. Therefore,
in addition to PYY and GLP-1 and the direct ef-
fects of acetate on the central nervous system, leptin
secretion may partly explain the possible satiety-in-
ducing effects of SCFAs. However, obesity is usually
characterized not only by changes in leptin concen-
tration, but also by the development of leptin resis-
tance [67, 68]. Whether SCFA-induced increases in
leptin secretion can overcome leptin resistance and
thereby affect satiety remains to be explored (Fig.).

Propionate administration has been confirmed in
clinical studies to modulate gut hormone release and
reduce food intake in healthy individuals. Thus, the
administration of inulin and propionate reduced the
amount of food consumed by 8.7 % (73 kcal), which
corresponded to the action of the signal of physio-
logical satiety, without suppressing the appetite sub-
jective reactions. With the simultaneous administra-
tion of inulin and propionate, a greater postprandial
release of PYY and GLP-1 was observed, as well as
stimulation of leptin release due to the activation of
adipocyte FFAR2 [69].

SCFAs may also positively influence body weight
control by influencing energy expenditure. In obese
mice, oral administration of sodium butyrate results
in weight loss by increasing energy expenditure and
fat oxidation [70, 71]. Thus, oral administration
of acetate to mice fed a high-fat diet can reduce
total body fat and liver fat accumulation without
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altering food intake, which has been associated
with increased expression of thermogenesis-asso-
ciated proteins (peroxisomal acyl-CoA oxidase
(ACOs), carnitine palmitoyltransferase, mitochon-
drial uncoupling protein 2) [72—74].

It is known that SCFAs can regulate low-grade
chronic inflammation caused by obesity by activat-
ing anti-inflammatory Treg cells and suppressing
pathways involved in the production of pro-inflam-
matory cytokines and chemokines, including those
derived from adipose tissue [79—81]. SCFAs may
also enhance gut barrier function, providing addi-
tional support for their anti-inflammatory poten-
tial. In several studies using gut cell lines, SCFAs
(especially butyrate) improved epithelial barrier
function and intestinal permeability by modulat-
ing tight junction protein and mucin expression
[82—85]. In vitro, acetate and butyrate can reduce
the lipopolysaccharide-induced release of tumor ne-
crosis factor (TNF-0) and inhibit nuclear factor xB
(NF-«B) [86, 87].

Alterations in bile acid metabolism

Recent evidence has shown that dysbiosis contrib-
utes to the development of NAFLD by altering bile
acid metabolism.

Bile acids (BAs) modulate glucose and lipid me-
tabolism by binding and activating the membrane
G-protein bile acid receptor (TGR5) and the farne-
soid X receptor (FXR). FXR is a nuclear receptor
expressed in the liver, intestine, and kidney. FXR
acts as an elevated levels indicator of bile acids and
initiates homeostatic responses to control their level,
and also modulates gluconeogenesis and lipogen-
esis [88]. Activation of FXR results in decreased
formation and increased catabolism of triglycerides
and free fatty acids (Fig 1). Elevated levels of tri-
glycerides and glucose have been noted in mice lack-
ing this receptor [89]. Activation of the TGRS recep-
tor prevents the development of insulin resistance
and obesity by increasing energy use [90—93]. In
an experimental study performed on laboratory ani-
mals (mice), it was found that TGRS activation in-
creases energy expenditure and oxygen consumption,
thereby reducing insulin resistance and preventing
the development of obesity [93]. In brown adipose
tissue adipocytes and skeletal muscle myocytes, in-
teracting with TGRS, bile acids initiate a cascade of
reactions with the activation of type 2 iodothyronine
deiodinase, which is involved in the metabolism of
thyroxine (regulator of cellular basal metabolism)
[94]. It has been shown that stimulation of TGRS in-
duces the glucagon-like peptide 1 (GLP-1) secretion
by intestinal enterochromaffin cells, with an increase
in insulin production by pancreatic beta cells [95].
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It is discussed that changes in BAs metabolism are
directly related to the composition of the intestinal
microbiota, namely, with a decrease in the activity of
bacteria that dehydroxylate BAs (Lachnospiraceae,
Ruminococcaceae, etc.), and an increase in bacteria
that deconjugate BAs (Lactobacillales, etc.) [96].
L.A. Adams et al. published a study investigating the
correlation between bile acid levels, microbiota com-
position, and fibrosis development in patients with
NAFLD. The study involved 122 adult patients with
an established diagnosis of NAFLD. All subjects
underwent a liver biopsy, the determination of bile
acids levels was performed using high-performance
liquid chromatography and mass spectrometry. Gut
microbiota was analyzed by 16S rRNA sequencing.
The results of the study demonstrated a positive cor-
relation between the stage of liver fibrosis progres-
sion and an increase in the level of bile acids, both
primary and secondary, in serum and stool samples of
patients. A correlation was also observed with micro-
bial taxa. The level of secondary non-conjugated bile
acids and total secondary bile acids correlated with
representatives of Bacteroidaceae, Bacteroidales,
Lachnospiraceae. A positive correlation was also ob-
served between these microorganisms and the F3/4
fibrosis stage [97].

In another study involving patients with NAFLD
and NASH, the authors investigated metabolomic
markers that can differentiate these two nosological
forms. The study included 35 non-diabetic patients
with a histologically confirmed diagnosis of NASH
(n = 24) and NAFLD (n = 11). The control group in-
cluded 25 clinically healthy volunteers. Using liquid
chromatography and mass spectrometry, 437 metabo-
lites were identified, of which 228 were described in
reference materials. When analyzing the results ob-
tained, some differences were observed in the meta-
bolomic profile of patients with NAFLD and NASH
from the metabolomic profile of the control group.
At the same time, the authors did not reveal signifi-
cant differences in metabolites among patients with
NAFLD and NASH. In the NASH group, there was
a 4-fold increase in the concentration of glycocholate
and taurocholate in plasma and a 2-fold increase in
the concentration of glycochenodeoxycholate com-
pared with the control group [98].

Change in endogenous ethanol
metabolism

Ethanol, produced by the gut microbiota, may
be another reason for the formation of adipose tis-
sue in the liver. Endogenous ethanol is a metabo-
lite of many bacterial species [99—101]. Ethanol is
absorbed and then reaches the liver, where, under
the action of alcohol dehydrogenase, it is oxidized
to acetate. Acetate is a substrate for the synthesis

of fatty acids and acetaldehyde, which promotes
synthesis of reactive oxygen species. It was shown
that more ethanol was present in the exhaled air of
ob/ob mice than in normal-weight rodents. However,
ob/ob mice exhaled 50 % less ethanol after antibi-
otic treatment [102]. Elevated ethanol levels have
been found in obese patients [103] as well as in chil-
dren with NASH [104]. 5-day antibiotic therapy in
patients with NASH contributed to a significant de-
crease in ethanol levels [105].

It is also known that ethanol increases the perme-
ability of the intestinal mucosa, which exacerbates
the effects of endotoxemia and contributes to the
progression of NAFLD (Fig.).

Changes in BCAAs Metabolism

Branched-chain amino acids (BCAAs) (leucine,
isoleucine and valine) are a group of proteinogenic
essential amino acids characterized by a branched
aliphatic side chain structure. BCAAs are current-
ly being discussed as potential biomarkers of insulin
resistance and predictors of type 2 diabetes (T2D)
[106]. Clinical studies have shown that elevated
plasma levels of BCAAs correlate with insulin resis-
tance and an increased risk of T2D [107].

It is discussed that the gut microbiota is in-
volved in BCAA metabolism. Prevotella copri and
Bacteroides vulgatus have been found to be main
species associated with elevated levels of circulating
BCAAs and insulin resistance [108]. In an experi-
mental study, the antibiotics treatment (vancomycin,
ciprofloxacin, metronidazole) to mice significant-
ly reduced the levels of BCAAs (leucine, isoleu-
cine and valine), as well as aromatic amino acids
(phenylalanine and tyrosine) [109].

Changes in the metabolism of
aromatic amino acids (indole, indole
propionic acid, phenylacetic acid)

and trimethylamine N-oxide (TMAO)

The role of other microbiota metabolites in the
pathogenesis of NAFLD is currently being studied.
Indole and indolepropionic acid, which are aromatic
amino acids (AAA), are the most common metabolites
of tryptophan. It has been determined that representa-
tives of the intestinal microbiota such as Bacteroides,
Clostridium, Lactobacillus, Bifidobacterium,
Peptostreptococcus, Ruminococcus gnavus and
Escherichia coli are involved in tryptophan metab-
olism [110]. After absorption through the intestinal
epithelium, indole enters the liver, where it is
hydroxylated to 3-hydroxyindole and then con-
verted (sulfation by sulfotransferase enzymes)
to indoxyl sulfate. It has been established that
indole increases the secretion of glucagon-like
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peptide-1 (GLP-1) by enteroendocrine cells. That
determines the severity of hepatic steatosis by
interfering with the insulin signaling pathway.
Studies have found an inverse correlation between
indole content and hepatic fat accumulation [111].
L. Ma et al. showed that the concentration of circu-
lating indole in the blood is significantly lower in
obese patients compared with patients with a normal
body mass index [111].

Indolepropionic acid, through activation of the
nuclear pregnane X receptor (PXR) and inhibition
of the transcription nuclear factor NF-xB, suppresses
the pro-inflammatory cytokines production in the in-
testine, it also protects the liver from damage caused
by oxidative stress [112]. In addition, indole propi-
onic acid prevents the development of NAFLD by
lowering glucose and insulin levels [24]. In the intes-
tine, indole propionic acid induces the expression of
tight junction proteins (zonulin and occludin). That
maintains the integrity of the intestinal epithelium
and thereby reduces the level of LPS in the blood
[113, 114].

Phenylacetic acid (PAA) is produced by sev-
eral species of Bacteroides, Eubacterium hallii,
Clostridium barlettii. It is one of the bacterial me-
tabolism products of phenylalanine [115]. It has
been established that, through PAA, the intestinal
microbiota can contribute to the development of he-
patic steatosis [116].

PAA significantly reduces protein kinase phos-
phorylation, resulting in increased insulin resistance.
PAA increases the utilization of branched chain
amino acids, leading to the hepatic lipid accumu-
lation [117].

It was shown that PAA promotes lipid accumu-
lation and changes in the gene expression involved
in glucose and lipid metabolism on hepatocyte
cell culture [117]. In vivo experiments, mice were
given PAA for two weeks, which led to a significant
increase in hepatic triglycerides accumulation [118].

Trimethylamine (TMA), a metabolite of choline,
is produced by the gut microbiota. In the liver, under
the enzyme flavin monooxygenase influence, TMA
is converted to trimethylamine N-oxide (TMAO).
TMAO may affect bile acid metabolism and can be
also associated with NAFLD [119]. In a mouse mod-
el, 18 weeks of TMAO administration was found to
impair liver function and increase hepatic triglycer-
ide accumulation and lipogenesis in mice fed a high-
fat diet. TMAO increases the synthesis of fatty acids
and changes the composition of fatty acids in the
liver towards FXR-antagonistic activity [120].

Probiotics

Changes in the intestinal microbiota, as one
of the pathogenetic factors in the development of
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NAFLD. They determine the growing interest in
the use of probiotics as an effective treatment for
NAFLD. Administration of probiotics to a patient
with NAFLD is aimed at restoring the normal gut
microbiota and thereby reducing liver inflammation.
A large number of experimental studies in animal
models have been published, showing the therapeutic
potential of probiotics in the treatment of NAFLD.

Loman BR examined 25 studies: 9 evaluated
prebiotics, 11 evaluated probiotics, and 7 evaluat-
ed symbiotic therapies in a total of 1309 patients.
Patients treated with probiotics made up the ma-
jority of the general patient population (43.3 % for
probiotics versus 34.0 % and 16.5 % for synbiotics
and prebiotics, respectively), and the majority were
confirmed cases of NAFLD or NASH by ultrasound
or biopsy liver (68.0 %). The average duration of
the intervention was 2.9 + 1.4 months. Dose and
treatment characteristics were more variable within
the prebiotic class. Treatments included cereal p-glu-
cans, psyllium husk, fructooligosaccharides (FOS),
xylooligosaccharides (XOS), chicory inulin, and fi-
ber extracts (ex. Chlorella vulgaris). For the synbi-
otic group of studies, FOS was the main source of
prebiotics (n=5 out of 7 studies); 2 other studies
used inulin. As with prebiotics, research on probiot-
ics varied widely in the microbial species that were
added (L. reuteri, L. bulgaricus, L. acidophilus,
L. rhamnosus, L. lactis, L. casei, L. plantarum,
L. sporogenes, L. delbrueckii, B. bifidum, B. long-
um, B. infantis, B. breve and St. thermophilus),
and most of the studies used multiple organisms.
L. acidophilus were the most commonly used species
in both probiotic and synbiotic treatments. A me-
ta-analysis showed that such therapy reduced BMI
(-0.37 kg/ m?; 95 % confidence interval [CI], -0.46
to -0.28; P < 0.001), liver enzymes (ALT, -6 .9 U/L
[95 % CI-9.4 to -4.3], AST, -4.6 U/L[95 % CI, -6.6
to -2.7], yv-GT, -7.9 U/L [95 % CI, -11.4 to -4.4];
P < 0.001), serum cholesterol (-10.1 mg/dL 95 %
CI, -13.6 to -6.6; P < 0.001), LDL-c (-4.5 mg/dL,
95 % CI, -8.9 to -0.17; P < 0.001) and TAG (-10.1
mg/dL). dl; 95 % CI, -18.0 to -2.3; P < 0.001). But
inflammation markers remained unchanged (TNF-a,
-2.0 ng/mL [95 % CI, -4.7 to 0 .61)]; CRP, -0.74
mg/L [95 % CI, -1.9 to 0.37]). Subgroup analysis by
treatment category showed similar effects of prebiot-
ics and probiotics on BMI and liver enzymes, but not
on total cholesterol, high-density lipoprotein (HDL)
cholesterol, and low-density lipoprotein (LDL) cho-
lesterol [121].

Another meta-analysis included 28 trials involv-
ing 1555 patients with NAFLD who received pro-
biotics for 4—28 weeks. Overall, probiotic therapy
had beneficial effects on body mass index (weighted
mean difference [WMD]: -1.46, 95 % CI: [-2.44,
-0.48]), alanine aminotransferase (WMD: -13.40,
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95 % CI: [-17.03, -9.77]), aspartate aminotransfer-
ase (WMD: -13.54, 95 % CI: [-17.86, -9.22]), gam-
ma-glutamyl transpeptidase (WMD: -9.88, 95 % CI:
[-17.77, -1.99]), insulin (WMD: -1.32, 95 % CI:
[-2.43, -0.21]), assessment of the homeostasis mod-
el — insulin resistance ( WMD: -0.42, 95 % CI:
[-0.73, -0.12]) and total cholesterol (WMD: -15.38,
95 % CI: [-26.50, -4.25]), but not fasting blood sugar,
lipid profile, or tumor necrosis factor-alpha [122].
Meta-analysis in 2019 — 15 randomized con-
trolled trials involving 782 patients with NAFLD
has indicated that the addition of probiotics and
synbiotics reduced the severity of hepatic steatosis
according to the results of ultrasound diagnostics,
reduced the serum levels of alanine aminotransfer-
ase, aspartate aminotransferase, triglycerides, total
cholesterol, high density lipoprotein, low density
lipoprotein and tumor necrosis factor-alpha (all in-
dicators p < 0.05). The supplement did not improve
body mass index (p = 0.99), waist circumference (p =
0.57) and fasting blood sugar (p = 0.39) [123]
Similar results are shown in meta-analyses pub-
lished in 2021. H. Jin analyzed the results of 22
randomized controlled trials (RCTs) (1301 partici-
pants) comparing treatment with prebiotics, pro-
biotics and synbiotics. Efficacy criteria were nor-
malization of aspartate aminotransferase, alanine
aminotransferase, total cholesterol, high-density
lipoprotein and low-density lipoprotein, as well
as body mass index. [124]. The study by R. Yang

et al. included 9 RCTs involving 352 patients with
NAFLD. The results of the meta-analysis showed
that in the probiotic therapy group there was a
significant decrease in the levels of serum indica-
tors: alanine aminotransferase (ALT), aspartate
aminotransferase (AST) and total cholesterol
compared with the control group. Probiotic ther-
apy was not associated with changes in body mass
index (BMI) [125].

Currently, the questions remain open — which
particular strain of probiotics have the maximum
effectiveness against NAFLD, what should be the
optimal duration of treatment and dosing regimens
of probiotics. The identified problems are the subject
of future research.

Conclusion

Improvements in methods for assessing the
metabolome allow expanding the range of un-
derstanding of the pathogenesis of many diseases.
Currently, studies are described that evaluate the
role of microbial metabolites in the development of
NAFLD.

However, a number of processes that affect the
liver, leading to the development of inflammation,
remain unclear. Of particular interest is a more tar-
geted study of certain types of molecules with the
subsequent development of the new methods of pre-
vention and treatment.
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