Фармакогенетические маркёры терапии колоректального рака. Новые подходы для оценки эффективности цитостатических препаратов
Аннотация
В настоящем обзоре систематизированы и обобщены сведения по наиболее информативным генетическим маркёрам, анализ которых может быть использован для оптимизации лечения пациентов с КРР при применении многокомпонентных режимов химиотерапии, таких как FOLFIRI и FOLFOX.
Об авторах
Н. Б. ЗахаржевскаяРоссия
Н. А. Кулемин
Россия
Е. А. Бабикова
Россия
Е. Б. Хомякова
Россия
Э. В. Генерозов
Россия
Генерозов Эдуард Викторович — доцент, кандидат биологических наук, заведующий лабораторией молекулярной генетики человека
119435, Москва, ул. Малая Пироговская, д.1а
Список литературы
1. Loupakis F., Schirripa M., Zhang W., Falcone A., Lenz H.-J. Pharmacogenetic Concerns in Metastatic Colorectal Cancer Therapy. Curr Colorectal Cancer Rep 2012; 8:263-71 [doi:10.1007/s11888-012-0137-2]
2. Stoehlmacher J. Prediction of efficacy and side effects of chemotherapy in colorectal cancer. Recent Results Cancer Res 2007; 176:81-8 [PMID:17607918]
3. Gonzalez de Castro D., Clarke P.A., Al-Lazikani B., Workman P. Personalized cancer medicine: molecular diagnostics, predictive biomarkers, and drug resistance. Clin Pharmacol Ther 2013; 93:252-9 [PMID:23361103 doi:10.1038/clpt.2012.237]
4. Mates I.N., Jinga V., Csiki I.E., Mates D., Dinu D., Constantin A., Jinga M. Single nucleotide polymorphisms in colorectal cancer: associations with tumor site and TNM stage. J Gastrointestin Liver Dis 2012; 21(1):45-52. [PMID:22457859]
5. Heinemann V., Douillard J.Y., Ducreux M., Peeters M. Targeted therapy in metastatic colorectal cancer an example of personalised medicine in action. Cancer Treat Rev 2013; 39:592-601 [PMID:23375249 doi:10.1016/j. ctrv.2012.12.011]
6. Clarke S.J., Yip S., Brown C., van Hazel G.A., Ransom D.T., Goldstein D., Jeffrey G.M., Tebbutt N.C., Buck M., Lowenthal R.M., Boland A., Gebski V., Zalcberg J., Simes R.J. Single-agent irinotecan or FOLFIRI as second-line chemotherapy for advanced colorectal cancer; results of a randomised phase II study (DaVINCI) and meta-analysis [corrected]. Eur J Cancer 2011; 47:1826-36 [PMID:21665462 doi:10.1016/ j.ejca.2011.04.024]
7. Heidelberger C., Chaudhuri N.K., Danneberg P., Mooren D., Griesbach L., Duschinsky R., Schnitzer R.J., Pleven E., Scheiner J. Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature 1957; 179:663-6 [PMID:13418758
8. Horie N., Aiba H., Oguro K., Hojo H., Takeishi K. Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5’-terminal regulatory region of the human gene for thymidylate synthase. Cell Struct Funct 1995; 20:191-7 [PMID:7586009]
9. Pullarkat S.T., Stoehlmacher J., Ghaderi V., Xiong Y.P., Ingles S.A., Sherrod A., Warren R., TsaoWei D., Groshen S., Lenz H.J. Thymidylate synthase gene polymorphism determines response and toxicity of 5-FU chemotherapy. Pharmacogenomics J 2001; 1:65-70 [PMID:11913730]
10. Kawakami K., Watanabe G. Identification and functional analysis of single nucleotide polymorphism in the tandem repeat sequence of thymidylate synthase gene. Cancer Res 2003; 63:6004-7 [PMID:14522928]
11. Mandola M.V., Stoehlmacher J., Muller-Weeks S., Cesarone G., Yu M.C., Lenz H.J., Ladner R.D. A novel single nucleotide polymorphism within the 5’ tandem repeat polymorphism of the thymidylate synthase gene abolishes USF-1 binding and alters transcriptional activity. Cancer Res 2003; 63:2898-904 [PMID:12782596]
12. Ezzeldin H., Diasio R. Dihydropyrimidine dehydrogenase deficiency, a pharmacogenetic syndrome associated with potentially life-threatening toxicity following 5-fluorouracil administration. Clin Colorectal Cancer 2004; 4:181-9 [PMID:15377401]
13. Wei X., McLeod H.L., McMurrough J., Gonzalez F.J., Fernandez-Salguero P. Molecular basis of the human dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil toxicity. J Clin Invest 1996; 98:610-5 [PMID:8698850 doi:10.1172/ JCI118830]
14. Ridge S.A., Sludden J., Brown O., Robertson L., Wei X., Sapone A., Fernandez-Salguero P.M., Gonzalez F.J., Vreken P., van Kuilenburg A.B., van Gennip A.H., McLeod H.L. Dihydropyrimidine dehydrogenase pharmacogenetics in Caucasian subjects. Br J Clin Pharmacol 1998; 46:151-6 [PMID:9723824]
15. Lenthe H., de Abreu R.A., Maring J.G., Vreken P., van Gennip A.H. Clinical implications of dihydropyrimidine dehydrogenase (DPD) deficiency in patients with severe 5-fluorouracilassociated toxicity: identification of new mutations in the DPD gene. Clin Cancer Res 2000; 6:4705-12 [PMID:11156223]
16. Wei X., Elizondo G., Sapone A., McLeod H.L., Raunio H., Fernandez-Salguero P., Gonzalez F.J. Characterization of the human dihydropyrimidine dehydrogenase gene. Genomics 1998; 51:391-400 [PMID:9721209 doi:10.1006/ geno.1998.5379]
17. Evans D.R., Guy H.I. Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J Biol Chem 2004; 279:33035-8 [PMID:15096496 doi:10.1074/ jbc.R400007200]
18. Kitajima M., Takita N., Hata M., Maeda T., Sakamoto K., Kamano T., Ochiai T. The relationship between 5-fluorouracil sensitivity and single nucleotide polymorphisms of the orotate phosphoribosyl transferase gene in colorectal cancer. Oncol Rep 2006; 15:161-5 [PMID:16328050]
19. Tsunoda A., Nakao K., Watanabe M., Matsui N., Ooyama A., Kusano M. Associations of various gene polymorphisms with toxicity in colorectal cancer patients receiving oral uracil and tegafur plus leucovorin: a prospective study. Ann Oncol 2011; 22:355-61 [PMID:20647221 doi:10.1093/annonc/ mdq358]
20. Cohen V., Panet-Raymond V., Sabbaghian N., Morin I., Batist G., Rozen R. Methylenetetrahydrofolate reductase polymorphism in advanced colorectal cancer: a novel genomic predictor of clinical response to fluoropyrimidinebased chemotherapy. Clin Cancer Res 2003; 9:1611-5 [PMID:12738713]
21. Frosst P., Blom H.J., Milos R., Goyette P., Sheppard C.A., Matthews R.G., Boers G.J., den Heijer M., Kluijtmans L.A., van den Heuvel L.P. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10:111-3 [PMID:7647779 doi:10.1038/ ng0595-111]
22. Pinedo H.M., Peters G.F. Fluorouracil: biochemistry and pharmacology. J Clin Oncol 1988; 6:1653-64 [PMID:3049954]
23. Sohn K.J., Croxford R., Yates Z., Lucock M., Kim Y.I. Effect of the methylenetetrahydrofolate reductase C677T polymorphism on chemosensitivity of colon and breast cancer cells to 5-fluorouracil and methotrexate. J Natl Cancer Inst 2004; 96:134-44 [PMID:14734703]
24. Bagley P.J., Selhub J. A common mutation in the methylenetetrahydrofolate reductase gene is associated with an accumulation of formylated tetrahydrofolates in red blood cells. Proc Natl Acad Sci USA 1998; 95:1321720 [PMID:9789068].
25. Rougier P., Bugat R., Douillard J.Y., Culine S., Suc E., Brunet P., Becouarn Y., Ychou M., Marty M., Extra J.M., Bonneterre J., Adenis A., Seitz J.F., Ganem G., Namer M., Conroy T., Negrier S., Merrouche Y., Burki F., Mousseau M., Herait P., Mahjoubi M. Phase II study of irinotecan in the treatment of advanced colorectal cancer in chemotherapynaive patients and patients pretreated with fluorouracilbased chemotherapy. J Clin Oncol 1997; 15:251-60 [PMID:8996150] 26.
26. Rasheed Z.A., Rubin E.H. Mechanisms of resistance to topoisomerase I-targeting drugs. Oncogene 2003; 22:7296-304 [PMID:14576839 doi:10.1038/sj.onc.1206935]
27. Pommier Y., Pourquier P., Urasaki Y., Wu J., Laco G.S. Topoisomerase I inhibitors: selectivity and cellular resistance. Drug Resist Updat 1999; 2:307-18 [PMID:11504505 doi:10.1054/drup.1999.0102]
28. Charasson V., Bellott R., Meynard D., Longy M., Gorry P., Robert J. Pharmacogenetics of human carboxylesterase 2, an enzyme involved in the activation of irinotecan into SN-38. Clin Pharmacol Ther 2004; 76:528-35 [PMID:15592324 doi:10.1016/j. clpt.2004.08.007]
29. Wu M.H., Chen P., Wu X., Liu W., Strom S., Das S., Cook E.H., Rosner G.L., Dolan M.E. Determination and analysis of single nucleotide polymorphisms and haplotype structure of the human carboxylesterase 2 gene. Pharmacogenetics 2004; 14:595-605 [PMID:15475733]
30. Kubo T., Kim S.R., Sai K., Saito Y., Nakajima T., Matsumoto K., Saito H., Shirao K., Yamamoto N., Minami H., Ohtsu A., Yoshida T., Saijo N., Ohno Y., Ozawa S., Sawada J. Functional characterization of three naturally occurring single nucleotide polymorphisms in the CES2 gene encoding carboxylesterase 2 (HCE-2). Drug Metab Dispos 2005; 33:1482-7 [PMID:16033949 doi:10.1124/dmd.105.005587]
31. Aono S., Yamada Y., Keino H., Hanada N., Nakagawa T., Sasaoka Y., Yazawa T., Sato H., Koiwai O. Identification of defect in the genes for bilirubin UDP-glucuronosyl-transferase in a patient with Crigler-Najjar syndrome type II. Biochem Biophys Res Commun 1993; 197:1239-44 [PMID:8280139 doi:10.1006/ bbrc.1993.2610]
32. Jinno H., Tanaka-Kagawa T., Hanioka N., Saeki M., Ishida S., Nishimura T., Ando M., Saito Y., Ozawa S., Sawada J. Glucuronidation of 7-ethyl-10hydroxycamptothecin (SN-38), an active metabolite of irinotecan (CPT-11), by human UGT1A1 variants, G71R, P229Q, and Y486D. Drug Metab Dispos 2003; 31:108-13 [PMID:12485959]
33. Cecchin E., Innocenti F., D’Andrea M., Corona G., de Mattia E., Biason P., Buonadonna A., Toffoli G. Predictive role of the UGT1A1, UGT1A7, and UGT1A9 genetic variants and their haplotypes on the outcome of metastatic colorectal cancer patients treated with fluorouracil, leucovorin, and irinotecan. J Clin Oncol 2009; 27:
34. Han J.Y., Lim H.S., Shin E.S., Yoo Y.K., Park Y.H., Lee J.E., Jang I.J., Lee D.H., Lee J.S. Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J Clin Oncol 2006; 24:2237-44 [PMID:16636344 doi:10.1200/JCO.2005.03.0239]
35. Hu Z.Y., Yu Q., Zhao Y.S. Dose-dependent association between UGT1A1*28 polymorphism and irinotecan-induced diarrhoea: a meta-analysis. Eur J Cancer 2010; 46:1856-65 [PMID:20335017 doi:10.1016/j.ejca.2010.02.049]
36. Iyer L., Hall D., Das S., Mortell M.A., Ramírez J., Kim S., di Rienzo A., Ratain M.J. Phenotype-genotype correlation of in vitro SN-38 (active metabolite of irinotecan) and bilirubin glucuronidation in human liver tissue with UGT1A1 promoter polymorphism. Clin Pharmacol Ther 1999; 65:576-82 [PMID:10340924 doi:10.1016/S0009-9236(99)70078-0]
37. Haaz M.C., Rivory L., Riché C., Vernillet L., Robert J. Metabolism of irinotecan (CPT-11) by human hepatic microsomes: participation of cytochrome P-450 3A and drug interactions. Cancer Res 1998; 58:468-72 [PMID:9458091]
38. Xie H.G., Wood A.J., Kim R.B., Stein C.M., Wilkinson G.R. Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics 2004; 5:243-72 [PMID:15102541 doi:10.1517/phgs.5.3.243.29833]
39. Innocenti F., Kroetz D.L., Schuetz E., Dolan M.E., Ramírez J., Relling M., Chen P., Das S., Rosner G.L., Ratain M.J. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J Clin Oncol. 2009; 27:2604-14. [PMID:19349540]
40. Maliepaard M., van Gastelen M.A., de Jong L.A., Pluim D., van Waardenburg R.C., RuevekampHelmers M.C., Floot B.G., Schellens J.H. Overexpression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Res 1999; 59:4559-63 [PMID:10493507]
41. Cha P.C., Mushiroda T., Zembutsu H., Harada H., Shinoda N., Kawamoto S., Shimoyama R., Nishidate T., Furuhata T., Sasaki K., Hirata K., Nakamura Y. Single nucleotide polymorphism in ABCG2 is associated with irinotecan-induced severe myelosuppression. J Hum Genet 2009; 54:572-80 [PMID:19696792 doi:10.1038/ jhg.2009.80]
42. Tournigand C., André T., Achille E., Lledo G., Flesh M., Mery-Mignard D., Quinaux E., Couteau C., Buyse M., Ganem G., Landi B., Colin P., Louvet C., de Gramont A. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol 2004; 22:22937 [PMID:14657227 doi:10.1200/JCO.2004.05.113]
43. Raymond E., Chaney S.G., Taamma A., Cvitkovic E. Oxaliplatin: a review of preclinical and clinical studies. Ann Oncol 1998; 9:1053-71 [PMID:9834817]
44. Meijer C., Mulder N.H., Hospers G.A., Uges D.R., de Vries E.G. The role of glutathione in resistance to cisplatin in a human small cell lung cancer cell line. Br J Cancer 1990; 62:72-7 [PMID:2390486]
45. Yin M., Yan J., Martinez-Balibrea E., Graziano F., Lenz H.J., Kim H.J., Robert J., Im S.A., Wang W.S., Etienne-Grimaldi M.C., Wei Q. ERCC1 and ERCC2 polymorphisms predict clinical outcomes of oxaliplatinbased chemotherapies in gastric and colorectal cancer: a systemic review and meta-analysis. Clin Cancer Res 2011; 17:1632-40 [PMID:21278243 doi:10.1158/1078-0432.CCR-10-2169]
46. Qiao Y., Spitz M.R., Shen H., Guo Z., Shete S., Hedayati M., Grossman L., Mohrenweiser H., Wei Q. Modulation of repair of ultraviolet damage in the host-cell reactivation assay by polymorphic XPC and XPD/ERCC2 genotypes. Carcinogenesis 2002; 23:295-9 [PMID:11872635]
47. Shi Q., Wang L.E., Bondy M.L., Brewster A., Singletary S.E., Wei Q. Reduced DNA repair of benzo[a] pyrene diol epoxide-induced adducts and common XPD polymorphisms in breast cancer patients. Carcinogenesis 2004; 25:1695-700 [PMID:15090466 doi:10.1093/carcin/bgh167]
48. Lunn R.M., Langlois R.G., Hsieh L.L., Thompson C.L., Bell D.A. XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency. Cancer Res 1999; 59:2557-61 [PMID:10363972]
49. Monaco R., Rosal R., Dolan M.A., Pincus M.R., BrandtRauf P.W. Conformational effects of a common codon 399 polymorphism on the BRCT1 domain of the XRCC1 protein. Protein J 2007; 26:541-6 [PMID:17899335 doi:10.1007/s10930-007-9095-y]
50. Liang J., Jiang T., Yao R.Y., Liu Z.M., Lv H.Y., Qi W.W. The combination of ERCC1 and XRCC1 gene polymorphisms better predicts clinical outcome to oxaliplatin-based chemotherapy in metastatic colorectal cancer. Cancer Chemother Pharmacol 2010; 66:493-500 [PMID:19960344 doi:10.1007/s00280-009-1186-3]
51. Manic S., Gatti L., Carenini N., Fumagalli G., Zunino F., Perego P. Mechanisms controlling sensitivity to platinum complexes: role of p53 and DNA mismatch repair. Curr Cancer Drug Targets 2003; 3:21-9 [PMID:12570658]
52. Townsend D.M., Tew K.D. The role of glutathione-Stransferase in anti-cancer drug resistance. Oncogene 2003; 22:7369-75 [PMID:14576844 doi:10.1038/sj.onc.1206940]
53. Chen Y.C., Tzeng C.H., Chen P.M., Lin J.K., Lin T.C.,
54. Chen W.S., Jiang J.K., Wang H.S., Wang W.S. Influence of GSTP1 I105V polymorphism on cumulative neuropathy and outcome of FOLFOX 4 treatment in Asian patients with colorectal carcinoma. Cancer Sci 2010; 101:530-5 [PMID:19922504 doi:10.1111/j.1349-7006.2009.01418.x]
55. Lo H.W., Ali-Osman F. Genetic polymorphism and function of glutathione S-transferases in tumor drug resistance. Curr Opin Pharmacol 2007; 7:367-74 [PMID:17681492 doi:101016/j.coph.2007.06.009]
56. Boige V., Mendiboure J., Pignon J.P., Loriot M.A., Castaing M., Barrois M., Malka D., Trégouët D.A., Bouché O., le Corre D., Miran I., Mulot C., Ducreux M., Beaune P., Laurent-Puig P. Pharmacogenetic assessment of toxicity and outcome in patients with metastatic colorectal cancer treated with LV5FU2, FOLFOX, and FOLFIRI: FFCD 2000-05. J Clin Oncol 2010; 28:2556-64 [PMID:20385995 doi:10.1200/JCO.2009.25.2106]
57. Porteous M. Insights from next generation sequencing of the cancer genome. J R Coll Physicians Edinb 2011; 41:323 [PMID:22184570 doi:10.4997/jrcpe.2011.408].
Рецензия
Для цитирования:
Захаржевская Н.Б., Кулемин Н.А., Бабикова Е.А., Хомякова Е.Б., Генерозов Э.В. Фармакогенетические маркёры терапии колоректального рака. Новые подходы для оценки эффективности цитостатических препаратов. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2015;25(6):67-76.
For citation:
Zakharzhevskaya N.B., Kulemin N.A., Babikova Ye.A., Khomyakova Ye.B., Generozov E.V. Pharmacogenetic markers of colorectal cancer treatment. New approaches for cytostatic drugs efficacy estimation. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2015;25(6):67-76. (In Russ.)

Контент доступен под лицензией Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.