Патогенетическое значение липидов при неалкогольной жировой болезни печени
Аннотация
Цель обзора. Рассмотреть основные представления о повреждающей роли липидов в патогенезе неалкогольной жировой болезни печени (НАЖБП).
Основные положения. По современным представлениям, центральную роль в повреждении клеток печени при НАЖБП играет стресс эндоплазматического ретикулума, который сопровождается дисфункцией белков – шаперонов. Последующие биохимические изменения ведут к нарушению клеточного дыхания, нарушению целостности митохондрий, повышают вероятность гибели гепатоцита. Непосредственным толчком для развития стресса эндоплазматического ретикулума служит избыточное накопление свободных жирных кислот, а индуцируемые ими события в клетке получили название
«липотоксического стресса», «липоапоптоза».
Максимальным повреждающим потенциалом обладают насыщенные жирные кислоты – пальмитиновая и стеариновая, что, возможно, объясняется их более медленным включением в состав эфиров. В патогенезе НАЖБП важную роль играют также другие повреждающие факторы, например окислительный стресс, поэтому сегодня правомерно существование теории «множественных параллельных толчков».
Защитным действием могут обладать ненасыщенные жирные кислоты, эссенциальные фосфолипиды, антиоксиданты, силимарин, гиполипидемические средства, глитазоны. Изучается возможность лечебного применения ингибиторов каспаз, катепсина В, JNK-киназы, «химических шаперонов».
Заключение. Липоапоптоз рассматривается как кардинальный признак НАЖБП, а свободные жирные кислоты – как активаторы программированной гибели гепатоцитов. Дальнейшее изучение молекулярных событий при липотоксическом стрессе, возможно, откроет новую страницу в лечении жировой болезни печени.
Об авторе
Ю. О. ШульпековаРоссия
Список литературы
1. Интернет-сайт URL: http://www.erudition.ru/referat/printref/id.57490_1.html – 12 июля 2011г.
2. Internetsite URL: http: // www.erudition.ru/referat/printref/id.57490_1.html July, 12 2011.
3. Интернет-сайт URL: http://www.medbiol.ru – 12 июля 2011г.
4. Internet-site URL: http: // www.medbiol.ru – July, 12 2011
5. Albano E, Mottaran E, Vidali M, et al. Immune response towards lipid peroxidation products as a predictor of progression of non-alcoholic fatty liver disease to advanced fibrosis. Gut. 2005; 54(7): 987–93.
6. Allard JP, Aghdassi E, Mohammed S, et al. Nutritional assessment and hepatic fatty acid composition in nonalcoholic fatty liver (NAFLD):a cross-sectional study. J Hepatol. 2008; 48(2): 300–7.
7. Barreyro FJ, Kobayashi S, Bronk SF, et al. Transcriptional regulation of Bim by FoxO3a mediates hepatocyte lipoapoptosis. J Biol Chem. 2007; 282(37): 27141–54.
8. Caballero F, Fernández A, Matías N, et al. Specific contribution of methionine and choline in nutritional nonalcoholic steatohepatitis: impact on mitochondrial S-adenosyl-L-methionine and glutathione. J Biol Chem. 2010; 285(24): 18528–36.
9. Cazanave S, Gores G. Mechanisms and clinical implications of hepatocyte lipoapoptosis. Clin Lipidol. 2010;
10. (1): 71–85.
11. Chalasani N, Deeg MA, Crabb DW. Systemic levels of lipid peroxidation and its metabolic and dietary correlates in patients with nonalcoholic steatohepatitis. Am J Gastroenterol. 2004; 99(8): 1497–502.
12. Chamulitrat W, Burhenne J, Rehlen T, et al. Bile saltphospholipid conjugate ursodeoxycholyl lysophosphatidylethanolamide as a hepatoprotective agent. Hepatology. 2009; 50(1): 143–54.
13. Charlton M, Viker K, Krishnan A, et al. Differential expression of lumican and fatty acid binding protein-1: new insights into the histologic spectrum of nonalcoholic fatty liver disease. Hepatology. 2009; 49(4): 1375–84.
14. Chavin KD, Yang S, Lin HZ, et al. Obesity induces expression of uncoupling protein-2 in hepatocytes and promotes liver ATP depletion. J Biol Chem. 1999; 274: 5692–700.
15. Cheung O, Sanyal AJ. Recent Advances in Nonalcoholic Fatty Liver Disease: Pathogenesis. Curr Opin Gastroenterol. 2010; 26(3): 202–8.
16. Chtioui H, Semela D, Ledermann M, et al. Expression and activity of the cytochrome P450 2E1 in patients with nonalcoholic steatosis and steatohepatitis. Liver Int. 2007; 27(6):764–71.
17. Cusi K. Role of insulin resistance and lipotoxicity in non-alcoholic steatohepatitis. Clin Liver Dis. 2009; 13(4): 545–63.
18. Czaja MJ. The future of GI and liver research: editorial perspectives. III. JNK/AP-1 regulation of hepatocyte death. Am J Physiol Gastrointest Liver Physiol. 2003; 284(6):875–9.
19. Davail S, Rideau N, Bernadet MD, et al. Effects of dietary fructose on liver steatosis in overfed mule ducks. Horm Metab Res. 2005; 37(1): 32–5.
20. Day CP, James OF. Steatohepatitis: a tale of two «hits»? Gastroenterology. 1998; 114: 842–45.
21. de Almeida IT, Cortez-Pinto H, Fidalgo G, et al. Plasma total and free fatty acids composition in human non-alcoholic steatohepatitis. Clin Nutr. 2002; 21(3):
22. –23.
23. Desvergne B. PPARs special issue: anchoring the present to explore the future. Biochim Biophys Acta. 2007; 1771(8): 913–4.
24. Diraison F, Moulin P, Beylot M. Contribution of hepatic de novo lipogenesis and re-esterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease. Diabetes Metab. 2003; 29(5): 478–85.
25. Dong H, Wang J, Li C, et al. The phosphatidylethanolamine N-methyltransferase gene V175M single nucleotide polymorphism confers the susceptibility to NASH in Japanese population. J Hepatol. 2007; 46(5): 915–20.
26. Donnelly KL, Smith CI, Schwarzenberg SJ, et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005; 115(5): 1343–51.
27. Dufour JF, Oneta CM, Gonvers JJ, et al. Randomized placebo-controlled trial of ursodeoxycholic acid with vitamin E in nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2006; 4(12): 1537–43.
28. Echtay KS, Murphy MP, Smith RA, et al. Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants. J Biol Chem. 2002; 277.
29. Feldstein AE, Canbay A, Angulo P, et al. Hepatocyte apoptosis and fas expression are prominent features of
30. human nonalcoholic steatohepatitis. Gastroenterology. 2003; 125(2): 437–43.
31. Feldstein AE, Werneburg NW, Canbay A, et al. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-α expression via a lysosomal pathway. Hepatology. 2004; 40(1): 185–94.
32. Feldstein AE, Werneburg NW, Li Z, et al. Bax inhibition protects against free fatty acid-induced lysosomal permeabilization. Am J Physiol Gastrointest Liver Physiol. 2006; 290(6): 1339–46.
33. Flamment M, Kammoun HL, Hainault I, et al. Endoplasmic reticulum stress: a new actor in the development of hepatic steatosis. Curr Opin Lipidol. 2010; 21 (Issue 3): 239–46.
34. Fromenty B, Robin MA, Igoudjil A, et al. The ins and outs of mitochondrial dysfunction in NASH. Diabetes Metab. 2004; 30(2): 121–38.
35. Haddad Y, Vallerand D, Brault A, Haddad PS. Antioxidant and hepatoprotective effects of silibinin in a rat model of nonalcoholic steatohepatitis. Evid Based Complement Alternat Med. 2009 Nov 1. [Epub ahead of print – www.pubmed.com].
36. Hardwick JP, Osei-Hyiaman D, Wiland H, et al. PPAR/RXR regulation of fatty acid metabolism and fatty acid ω-hydroxylase (CYP4) isozymes: Implications for prevention of lipotoxicity in fatty liver disease. PPAR Res. 2009: 9527–34.
37. Herrera E, Barbas C. Vitamin E: Action, metabolism and perspectives. J Physiol Biochem. 2001; 57: 43–56.
38. Ikura Y, Ohsawa M, Suekane T, et al. Localization of oxidized phosphatidylcholine in nonalcoholic fatty liver disease: impact on disease progression. Hepatology. 2006; 43(3): 506–14.
39. Kalhan SC, Edmison J, Marczewski S, et al. Methionine and protein metabolism in non-alcoholic steatohepatitis: evidence for lower rate of transmethylation of methionine. Clin Sci (Lond). 2011; 121(4): 179–89.
40. Kidd P, Head K. A review of the bioavailability and clinical efficacy of milk thistle phytosome: a silybinphosphatidylcholine complex (Siliphos). Altern Med Rev. 2005; 10: 193–203.
41. Kodama Y, Brenner DA. C-Jun N-terminal kinase signaling in the pathogenesis of nonalcoholic fatty liver disease: multiple roles in multiple steps. Hepatology. 2009; 49(1): 6–8.
42. Leclercq IA, Farrell GC, Field J, et al. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J Clin Invest. 2000; 105:1067–75.
43. Li Z, Berk M, McIntyre TM, et al. The lysosomalmitochondrial axis in free fatty acid-induced hepatic lipotoxicity. Hepatology. 2008; 47(5): 1495–503.
44. Li ZZ, Berk M, McIntyre TM, et al. Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl-CoA desaturase. J Biol Chem. 2009; 284(9): 5637–44.
45. Lieber CS. The discovery of the microsomal ethanol oxidizing system and its physiologic and pathologic role. Drug Metab Rev. 2004; 36(3–4): 511–29.
46. Listenberger LL, Han X, Lewis SE, et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA. 2003; 100(6): 3077–82.
47. Madan K, Bhardwaj P, Thareja S, et al. A. Oxidant stress and antioxidant status among patients with nonalcoholic fatty liver disease (NAFLD). J Clin Gastroenterol. 2006; 40(10): 930–35.
48. Makeham MA, Dovey SM, County M, Kidd MR. An international taxonomy for errors in general practice: a pilot study. Med J Aust. 2002; 177: 68–72.
49. Malhi H, Bronk SF, Werneburg NW, et al. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J Biol Chem. 2006; 281(17): 12093–101.
50. Malhi H, Gores GJ. Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin Liver Dis. 2008; 28(4): 360–9.
51. Manna SK, Mukhopadhyay A, Van NT, Aggarwal BB. Silymarin suppresses TNF-induced activation of NF-kappa B, c-Jun N-terminal kinase, and apoptosis. J Immunol. 1999; 163: 6800–9.
52. Mari M, Caballero F, Colell A, et al. Mitochondrial free cholesterol loading sensitizes to TNFand Fas-mediated steatohepatitis. Cell Metab. 2006; 4(3): 185–98.
53. Mas E, Danjoux M, Garcia V, et al. IL-6 deficiency attenuates murine diet-induced non-alcoholic steatohepatitis. PLoS One. 2009; 4(11): 792–9.
54. McClain CJ, Mokshagundam SP, Barve SS, et al. Mechanisms of non-alcoholic steatohepatitis. Alcohol.
55. ; 34: 67–79.
56. Mu YM, Yanase T, Nishi Y, et al. Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells. Endocrinology. 2001; 142(8): 3590–7.
57. Nair J, Srivatanakul P, Haas C, et al. High urinary excretion of lipid peroxidation-derived DNA damage in patients with cancer-prone liver diseases. Mutat Res. 2010; 683: 23–8.
58. Neuschwander-Tetri BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology. 2010; 52(2): 774–88.
59. Ouyang X, Cirillo P, Sautin Y, et al. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol. 2008; 48(6): 993–9.
60. Ozcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and Type 2 diabetes. Science. 2004; 306(5695): 457–61.
61. Ozcan U, Yilmaz E, Ozcan L, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of Type 2 diabetes. Science. 2006; 313(5790): 1137–40.
62. Paris F, Grassme H, Cremesti A, et al. Natural ceramide reverses Fas resistance of acid sphingomyelinase–/– hepatocytes. J Biol Chem. 2001; 276(11): 8297–305.
63. Parrino J, Hotchkiss RS, Bray M. Prevention of immune cell apoptosis as potential therapeutic strategy for severe infections. Emerging Infect Dis. 2007; 13(2): 191–8.
64. Perlemuter G, Davit-Spraul A, Cosson C, et al. Increase in liver antioxidant enzyme activities in non-alcoholic fatty liver disease. Liver Int. 2005; 25(5): 946–53.
65. Pessayre D. Role of mitochondria in non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2007; 22 suppl 1: 20–7.
66. Polyzos SA, Kountouras J, Zavos C. Nonalcoholic fatty liver disease: the pathogenetic roles of insulin resistance and adipocytokines. Curr Mol Med. 2009; 9(3): 299–314.
67. Puri P, Baillie RA, Wiest MM, et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology. 2007; 46(4): 1081–90.
68. Puri P, Wiest MM, Cheung O, et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology. 2009; 50(6): 1827–38.
69. Robertson G, Leclercq I, Farrell GC. Nonalcoholic steatosis and steatohepatitis. II. Cytochrome P-450 enzymes and oxidative stress. Am J Physiol Gastrointest Liver Physiol. 2001; 281(5): 1135–9.
70. Sakurai K, Cederbaum AI. Oxidative stress and cytotoxicity induced by ferric-nitrilotriacetate in HepG2 cells that express cytochrome P450 2E1. Mol Pharmacol. 1998; 54: 1024–35.
71. Sanyal AJ, Campbell-Sargent C, Mirshahi F, et al. Non-alcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology. 2001; 120(5): 1183–92.
72. Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010; 362(18): 1675–85.
73. Schroeder F, Petrescu AD, Huang H, et al. Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription. Lipids. 2008; 43(1): 1–17.
74. Seki S, Kitada T, Sakaguchi H. Clinicopathological significance of oxidative cellular damage in non-alcoholic fatty liver diseases. Hepatol Res. 2005; 33(2): 132–4.
75. Shaker E, Mahmoud H, Mnaa S. Silymarin, the antioxidant component and Silybum marianum extracts prevent liver damage. Food Chem Toxicol. 2010; 48: 803–6.
76. Singh R, Wang Y, Xiang Y, et al. Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance. Hepatology. 2009; 49(1): 87–96.
77. Sugden MC, Holness MJ. Role of nuclear receptors in the modulation of insulin secretion in lipid-induced insulin resistance. Biochem Soc Trans. 2008; 36(5): 891–900.
78. Sugden MC, Zariwala MG, Holness MJ. PPARs and the orchestration of metabolic fuel selection. Pharmacol Res. 2009; 60(3): 141–50.
79. Svegliati-Baroni G, Candelaresi C, Saccomanno S, et al. A model of insulin resistance and nonalcoholic steatohepatitis in rats: role of peroxisome proliferator-activated receptor-α and n-3 polyunsaturated fatty acid treatment on liver injury. Am J Pathol. 2006; 169(3): 846–60.
80. Syn WK, Yang L, Chiang DJ, et al. Genetic differences in oxidative stress and inflammatory responses to dietinduced obesity do not alter liver fibrosis in mice. Liver Int. 2009; 29(8): 1262–72.
81. Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol.
82. ; 9(3): 231–41.
83. Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology. 2010; 52(5): 1836–46.
84. Urano F, Wang X, Bertolotti A, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000; 287(5453):664–6.
85. Wang D, Wei Y, Pagliassotti MJ. Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology. 2006; 147(2): 943–51.
86. Wang XG, Lin B, Kidder JM, et al. Effects of environmental changes on expression of the oligopeptide permease (opp) genes of Borrelia burgdorferi. J Bacteriol. 2002; 184: 6198–206.
87. Weltman MD, Farrell GC, Hall P, et al. Hepatic cytochrome P450 2E1 is increased in patients with nonalcoholic steatohepatitis. Hepatology. 1998; 27(1): 128–33.
88. Witek RP, Stone WC, Karaca FG, et al. Pan-caspase inhibitor VX-166 reduces fibrosis in an animal model of nonalcoholic steatohepatitis. Hepatology. 2009; 50(5): 1421–30.
89. Yamaguchi H, Wang HG. CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J Biol Chem. 2004; 279(44): 45495–502.
90. Yamaguchi K, Yang L, McCall S, et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology. 2007; 45(6): 1366–74.
91. Yamamoto K, Ichijo H, Korsmeyer SJ. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol. 1999; 19(12): 8469–78.
92. Younossi ZM, Jarrar M, Nugent C, et al. A novel diagnostic biomarker panel for obesity-related nonalcoholic steatohepatitis (NASH). Obes Surg. 2008; 18(11): 1430–37.
Рецензия
Для цитирования:
Шульпекова Ю.О. Патогенетическое значение липидов при неалкогольной жировой болезни печени. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2012;22(1):45-56.
For citation:
Shulpekova Yu.O. Pathogenic role of lipids in non-alcoholic fatty liver disease. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2012;22(1):45-56. (In Russ.)

Контент доступен под лицензией Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.