Preview

Российский журнал гастроэнтерологии, гепатологии, колопроктологии

Расширенный поиск

Метаболизм желчных кислот, заболевания печени и микробиом

https://doi.org/10.22416/1382-4376-2018-28-2-4-10

Полный текст:

Аннотация

Цель обзора. Представить современные данные о взаимосвязи метаболизма желчных кислот (ЖК), микробиома и заболеваний печени. Основные положения. ЖК - важные сигнальные молекулы, регулирующие метаболизм липидов и глюкозы. Энтерогепатическая циркуляция ЖК занимает центральное место в абсорбции нутриентов и их метаболической регуляции. Результаты исследований свидетельствуют о взаимосвязи ЖК, кишечного микробиома и заболеваний печени. В частности, хорошо изучена роль нарушения метаболизма ЖК в развитии неалкогольной жировой болезни печени. Практический интерес представляют секвестранты ЖК, которые продолжают изучать как регуляторы метаболизма ЖК и глюкозы. Заключение. ЖК выполняют разнообразные функции в организме. Результаты многочисленных работ демонстрируют тесную связь между метаболизмом ЖК, патологией печени и кишечным микробиомом.

Об авторах

Ю. В. Евсютина
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» (Сеченовский университет); ФГБУ «Национальный медицинский исследовательский центр профилактической медицины»
Россия


В. Т. Ивашкин
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» (Сеченовский университет)
Россия


Список литературы

1. Chiang Y.L. Bile Acid Metabolism and Signaling. Compr Physiol 2013; 3(3):1191-212.

2. Boyer J.L. Bile Formation and Secretion. Compr Physiol 2013; 3(3):1035-78.

3. Li T., Apte U. Bile acid metabolism and signaling in cholestasis, inflammation and cancer. Adv Pharmacol 2015; 74:263-302.

4. Dawson Р.A., Karpen S.J. Intestinal transport and metabolism of bile acids. J Lipid Res 2015; 56(6):1085-99.

5. Ridlon J.M., Harris S.C., Bhowmik S. et al. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 2016; 7(1):22-39.

6. Li T., Chiang Y.L. Bile acids as metabolic regulators. Curr Opin Gastroenterol 2015; 31(2):159-65.

7. Dawson P.A., Hubbert M.L., Rao A. Getting the mOST from OST: Role of organic solute transporter, OSTalphaOSTbeta, in bile acid and steroid metabolism. Biochim Biophys Acta 2010; 1801:994-1004.

8. Vallim de Aguiar T.Q., Tarling E.J., Edwards P.A. Pleiotropic Roles of Bile Acids in Metabolism. Cell Metab 2013; 17(5):657-69.

9. Bajaj J.S., Ridlon J.M., Hylemon P.B. et al. Linkage of gut microbiome with cognition in hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol 2012; 302:16875.

10. Bajaj J.S., Hylemon P.B., Ridlon J.M. et al. Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am J Physiol Gastrointest Liver Physiol 2012; 303:675-85.

11. Kakiyama G., Pandak W.M., Gillevet P.M. et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol 2013; 58(5):949-55.

12. Ridlon J.M., Kang D.J., Hylemon P.B. et al. Bile Acids and the Gut Microbiome. Curr Opin Gastroenterol 2014; 30(3):332-8.

13. Bajaj J.S., Heuman D.M., Hylemon P.B. et al. The Cirrhosis Dysbiosis Ratio defines Changes in the Gut Microbiome Associated with Cirrhosis and its Complications. J Hepatol 2014; 60(5):940-7.

14. Islam K.B., Fukiya S., Hagio M. et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 2011;141(5):1773-81.

15. Tilg H., Moschen А.R., Roden М. NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol 2017; 14:32-42.

16. Zhu Y., Liu H., Zhang M. et al. Fatty liver diseases, bile acids, and FXR. Acta Pharm Sin B 2016; 6(5):409-12.

17. Xu J.Y., Li Z.P., Zhang L. et al. Recent insights into farnesoid X receptor in non-alcoholic fatty liver disease. World J Gastroenterol 2014:7; 20(37):13493-500.

18. Mudaliar S., Henry R., Sanyal A.J. et al. Efficacy and Safety of the Farnesoid X Receptor Agonist Obeticholic Acid in Patients With Type 2 Diabetes and Nonalcoholic Fatty Liver Disease. Gastroenterology 2013; 145:574-82.

19. Neuschwander-Tetri B.A., Loomba R., Sanyal A.J. et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 2015; 385:956-65.

20. Kuribayashi H., Miyata M., Yamakawa H. et al. Enterobacteria-mediated deconjugation of taurocholic acid enhances ileal farnesoid X receptor signaling. Eur J Pharmacol 2012; 697(1-3):132-8.

21. Sayin S.I., Wahlstrom A., Felin J. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 2013; 17(2):225-35.

22. Swann J.R., Want E.J., Geier F.M. et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Nat Acad Sci USA 2011; 108(Suppl 1):4523-30.

23. Ryan K.K., Tremaroli V., Clemmensen C. et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 2014; 509(7499):183-8.

24. Bashiardes S., Shapiro H., Rozin S. et al. Non-alcoholic fatty liver and the gut microbiota. Mol Metab 2016; 5(9):782-94.

25. Mouzaki M., Wang A.Y., Bandsma R. et al. Bile acids and dysbiosis in non-alcoholic fatty liver disease. PloS One 2016; 11(5): e0151829.

26. Levy M., Thaiss C.A., Zeevi D. et al. Microbiotamodulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 2015 Dec 3;163(6):1428-43.

27. Goldberg R.B., Fonseca V.A., Truitt K.E. et al. Efficacy and safety of colesevelam in patients with type 2 diabetes mellitus and inadequate glycemic control receiving insulinbased therapy. Arch Intern Med 2008; 168:1531-40.

28. Sonne D.P., Hansen M., Knop F.K. Bile acid sequestrants in type 2 diabetes: potential effects on GLP1 secretion. European journal of endocrinology. Eur Federat Endocr Soc 2014; 171:47-65.

29. Holst J.J. The physiology of glucagon-like peptide 1. Physiol Rev 2007; 87:1409-39.

30. Thomas C., Gioiello A., Noriega L. et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 2009; 10:167-77.

31. Harach T., Pols T.W., Nomura M. et al. TGR5 potentiates GLP-1 secretion in response to anionic exchange resins. Sci Report 2012; 2:430.

32. Potthoff M.J., Potts A., He T. et al. Colesevelam suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice. Am J Physiol Gastrointest Liv Physiol 2013; 304:371-80.

33. Hofmann A.F. Bile acid sequestrants improve glycemic control in type 2 diabetes: a proposed mechanism implicating glucagon-like peptide 1 release. Hepatology 2011; 53:1784.

34. Devkota S., Wang Y., Musch M.W. et al. Dietary fatinduced taurocholic acid promotes pathobiont expansion and colitis in Il10-/mice. Nature 2012; 487:104-8.

35. Devkota S., Chang E.B. Interactions between diet, bile acid metabolism, gut microbiota, and inflammatory bowel diseases. Dig Dis 2015; 33:351-6.

36. Caesar R., Tremaroli V., Kovatcheva-Datchary P. et al. Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling. Cell Metab 2015; 22:658-68.

37. Lessa F.C., Mu Y., Bamberg W.M. et al. Burden of Clostridium difficile infection in the United States. N Engl J Med 2015; 26; 372(9):825-34.

38. van Nood E., Vrieze A., Nieuwdorp M. et al. Duodenal infusion of feces for recurrent Clostridium difficile. N Engl J Med 2013; 368(22):407-15.

39. Buffie C.G., Bucci V., Stein R.R. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 2015; 517(7533):205-8.

40. Wilson K.H., Kennedy M.J., Fekety F.R. Use of sodium taurocholate to enhance spore recovery on a medium selective for Clostridium difficile. J Clin Microbiol 1982; (3):443-6.

41. Sorg J.A., Sonenshein A.L. Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J Bacteriol 2010; 192(19):4983-90.

42. Sorg J.A., Sonenshein A.L. Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol 2008; 190(7):2505-12.

43. Francis M.B., Allen C.A., Sorg J.A. Muricholic acids inhibit Clostridium difficile spore germination and growth. PLoS One 2013; 8(9):e73653.

44. Francis M.B., Allen C.A., Shrestha R. et al. Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection. PLoS Pathog 2013; 9(5):e1003356.


Для цитирования:


Евсютина Ю.В., Ивашкин В.Т. Метаболизм желчных кислот, заболевания печени и микробиом. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2018;28(2):4-10. https://doi.org/10.22416/1382-4376-2018-28-2-4-10

For citation:


Yevsyutina Y.V., Ivashkin V.T. Metabolism of bile acids, liver diseases and microbiome. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2018;28(2):4-10. (In Russ.) https://doi.org/10.22416/1382-4376-2018-28-2-4-10

Просмотров: 190


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1382-4376 (Print)
ISSN 2658-6673 (Online)