Pathogenetic Substantiation of the Therapeutic Impact on Microbiota in Irritable Bowel Syndrome
https://doi.org/10.22416/1382-4376-2019-29-4-7-14
Abstract
Aim. This review aims to describe the nature of changes in the intestinal microbiota in irritable bowel syndrome (IBS) and provide a pathogenetic justification of the feasibility of a therapeutic impact on microbiota.
General findings. An important aspect of the interaction of intestinal bacteria with the “host” cells is their contact with pattern recognition receptors of enterocytes, dendritic cell receptors, as well as a transcellular transport of antigens in the region of Peyer’s patches. The area of interaction of intestinal bacteria and the human body is not limited to the intestines. Intestinal bacteria demonstrate a significant humoral effect due to signalling molecules, some of which exhibit neurotransmitter properties. The study of the bacterial cross-feeding for various species, i.e. mutual use of nutrient substrates produced by bacteria of various species, is of a great interest. The development of a lowactivity inflammation in IBS can partly be explained by the increased interaction of flagellin with the corresponding receptor, as well as the influx of excess bacteria from the small intestine. The majority of studies on IBS have demonstrated the predominance of intestinal bacteria with pro-inflammatory potential (Enterobacteriaceae) and the lack of bacteria with a pronounced anti-inflammatory, antimicrobial and enzymatic action (Lactobacillus and Bifidobacterium), as well as increased mucus degradation. Similar changes are observed in inflammatory bowel diseases. Reduced microbial diversity increases susceptibility to intestinal infections and parasitoses, including those caused by protozoa conditionally pathogenic for adults, such as Blastocystis hominis hominis, Dientamoeba fragilis, Giardia lamblia. With the help of nutrition correction, the use of probiotics and functional foods containing certain probiotic strains, plant fibres (primarily psyllium) and, in some cases, nonabsorbable antibiotics, a positive effect can be achieved in a significant number of IBS patients. Recent works have shown that clinical improvement is accompanied by a change in the composition of the intestinal microbiota.
Conclusion. For the pathogenetic treatment of irritable bowel syndrome, the use of non-drug treatment is justified, such as diet optimization and prescription of plant fibres and probiotic bacterial strains. The positive effect of such an approach is largely determined by modification of the intestinal microbiota composition. This opens up prospects for a further, more targeted impact on the intestinal microbiome.
About the Authors
Yu. O. ShulpekovaRussian Federation
Cand. Sci. (Med), Assoc. Prof., Department of Propaedeutics of Internal Diseases, Faculty of Medicine
119991, Moscow, Pogodinskaya str., 1, building 1
G. H. Babaeva
Azerbaijan
PhD in Medicine, Assoc. Prof., Department of Therapy (with Physiotherapy course)
AZ1012, Baku, Tbilisi ave., 3165
V. Yu. Rusyaev
Russian Federation
Student
References
1. Schroeder B.O, Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016t;22(10):1079–89. DOI: 10.1038/nm.4185
2. Sheptulin A.A., Vize-Khripunova M.A. Review of Rome-IV criteria for the irritable bowel syndrome: are there any basic changes? Ross J gastroenterol gepatol koloproktol 2016;26(5):99–103 (In Rus.).
3. Ivashkin V.T., Ivashkin K.V. Human microbiome, applied to clinical practice. Russ J Gastroenterol Hepatol Coloproctol. 2017;27(6):4–13 (In Russ.)]. DOI: 10.22416/1382-4376-2017-27-6-4-13
4. Drossman D.A. Functional Gastrointestinal Disorders: History, Pathophysiology, Clinical Features and Rome IV. Gastroenterology. 2016;19;pii: S0016-5085(16)00223-7.
5. Dlugosz A., Zakikhany K., Acevedo N., D’Amato M., Lindberg G. Increased Expression of Toll-Like Receptors 4, 5, and 9 in Small Bowel Mucosa from Patients with Irritable Bowel Syndrome. Biomed Res Int. 2017;2017:9624702. DOI: 10.1155/2017/9624702
6. Schroeder B.O, Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016t;22(10):1079–89. DOI: 10.1038/nm.4185
7. Zhou Q., Zhang B., Verne G.N. Intestinal membrane permeability and hypersensitivity in the irritable bowel syndrome. Pain. 2009;146(1-2):41–6. DOI: 10.1016/j.pain.2009.06.017
8. Ivashkin V.T., Ivashkin K.V. Human microbiome, applied to clinical practice. Russ J Gastroenterol Hepatol Coloproctol. 2017;27(6):4–13 (In Russ.)]. DOI: 10.22416/1382-4376-2017-27-6-4-13
9. Henström M., D’Amato M. Genetics of irritable bowel syndrome. Mol Cell Pediatr. 2016;3(1):7. DOI: 10.1186/s40348-016-0038-6
10. Dlugosz A., Zakikhany K., Acevedo N., D’Amato M., Lindberg G. Increased Expression of Toll-Like Receptors 4, 5, and 9 in Small Bowel Mucosa from Patients with Irritable Bowel Syndrome. Biomed Res Int. 2017;2017:9624702. DOI: 10.1155/2017/9624702
11. Rej A., Sanders D.S. Gluten-Free Diet and Its ‘Cousins’ in Irritable Bowel Syndrome. Nutrients. 2018;10(11):1727. DOI: 10.3390/nu10111727
12. Zhou Q., Zhang B., Verne G.N. Intestinal membrane permeability and hypersensitivity in the irritable bowel syndrome. Pain. 2009;146(1-2):41–6. DOI: 10.1016/j.pain.2009.06.017
13. Bonaz B., Bazin T., Pellissier S. The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Front Neurosci. 2018;12:49. DOI: 10.3389/fnins.2018.00049
14. Henström M., D’Amato M. Genetics of irritable bowel syndrome. Mol Cell Pediatr. 2016;3(1):7. DOI: 10.1186/s40348-016-0038-6
15. Bonaz B., Sinniger V., Pellissier S. The Vagus Nerve in the Neuro-Immune Axis: Implications in the Pathology of the Gastrointestinal Tract. Front Immunol. 2017;8:1452. DOI: 10.3389/fimmu.2017.01452
16. Rej A., Sanders D.S. Gluten-Free Diet and Its ‘Cousins’ in Irritable Bowel Syndrome. Nutrients. 2018;10(11):1727. DOI: 10.3390/nu10111727
17. Shukla R., Ghoshal U., Ranjan P., Ghoshal U.C. Expression of Toll-like Receptors, Pro-, and Anti-inflammatory Cytokines in Relation to Gut Microbiota in Irritable Bowel Syndrome: The Evidence for Its Micro-organic Basis. J Neurogastroenterol Motil. 2018;24(4):628–42. DOI: 10.5056/jnm18130
18. Bonaz B., Bazin T., Pellissier S. The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Front Neurosci. 2018;12:49. DOI: 10.3389/fnins.2018.00049
19. Poretsky R., Rodriguez-R. L.M., Luo C., Tsementzi D., Konstantinidis K.T. Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS One. 2014;9(4):e93827. DOI: 10.1371/journal.pone.0093827
20. Bonaz B., Sinniger V., Pellissier S. The Vagus Nerve in the Neuro-Immune Axis: Implications in the Pathology of the Gastrointestinal Tract. Front Immunol. 2017;8:1452. DOI: 10.3389/fimmu.2017.01452
21. Ríos-Covián D., Ruas-Madiedo P., Margolles A., Gueimonde M., de Los Reyes-Gavilán C.G., Salazar N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front Microbiol. 2016;7:185. DOI: 10.3389/fmicb.2016.00185
22. Shukla R., Ghoshal U., Ranjan P., Ghoshal U.C. Expression of Toll-like Receptors, Pro-, and Anti-inflammatory Cytokines in Relation to Gut Microbiota in Irritable Bowel Syndrome: The Evidence for Its Micro-organic Basis. J Neurogastroenterol Motil. 2018;24(4):628–42. DOI: 10.5056/jnm18130
23. Rivière A., Selak M., Lantin D., Leroy F., De Vuyst L. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Front Microbiol. 2016;7:979. DOI: 10.3389/fmicb.2016.00979
24. Poretsky R., Rodriguez-R. L.M., Luo C., Tsementzi D., Konstantinidis K.T. Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS One. 2014;9(4):e93827. DOI: 10.1371/journal.pone.0093827
25. Nickerson K.W., Atkin A.L., Hornby J.M. Quorum sensing in dimorphic fungi: farnesol and beyond. Appl Environ Microbiol. 2006;72(6):3805–13. DOI: 10.1128/AEM.02765-05
26. Ríos-Covián D., Ruas-Madiedo P., Margolles A., Gueimonde M., de Los Reyes-Gavilán C.G., Salazar N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front Microbiol. 2016;7:185. DOI: 10.3389/fmicb.2016.00185
27. Rodiño-Janeiro B.K., Vicario M., Alonso-Cotoner C., Pascua-García R., Santos J. A Review of Microbiota and Irritable Bowel Syndrome: Future in Therapies. AdvTher. 2018;35(3):289–310. DOI: 10.1007/s12325-018-0673-5
28. Rivière A., Selak M., Lantin D., Leroy F., De Vuyst L. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Front Microbiol. 2016;7:979. DOI: 10.3389/fmicb.2016.00979
29. Principi N., Cozzali R., Farinelli E., Brusaferro A., Esposito S. Gut dysbiosis and irritable bowel syndrome: The potential role of probiotics. J Infect. 2018;76(2):111–20. DOI: 10.1016/j.jinf.2017.12.013
30. Nickerson K.W., Atkin A.L., Hornby J.M. Quorum sensing in dimorphic fungi: farnesol and beyond. Appl Environ Microbiol. 2006;72(6):3805–13. DOI: 10.1128/AEM.02765-05
31. Dlugosz A., Nowak P., D’Amato M., Mohammadian Kermani G., Nyström J., Abdurahman S., Lindberg G. Increased serum levels of lipopolysaccharide and antiflagellin antibodies in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil. 2015;27(12):1747–54. DOI: 10.1111/nmo.12670
32. Rodiño-Janeiro B.K., Vicario M., Alonso-Cotoner C., Pascua-García R., Santos J. A Review of Microbiota and Irritable Bowel Syndrome: Future in Therapies. AdvTher. 2018;35(3):289–310. DOI: 10.1007/s12325-018-0673-5
33. Jeffery I.B., O’Toole P.W., Öhman L., Claesson M.J., Deane J., Quigley E.M., Simrén M. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut. 2012;61(7):997–1006. DOI: 10.1136/gutjnl-2011-301501
34. Principi N., Cozzali R., Farinelli E., Brusaferro A., Esposito S. Gut dysbiosis and irritable bowel syndrome: The potential role of probiotics. J Infect. 2018;76(2):111–20. DOI: 10.1016/j.jinf.2017.12.013
35. Chen B.R., Du L.J., He H.Q., Kim J.J., Zhao Y., Zhang Y.W., Luo L., Dai N. Fructo-oligosaccharide intensifies visceral hypersensitivity and intestinal inflammation in a stress-induced irritable bowel syndrome mouse model. World J Gastroenterol. 2017 21;23(47):8321–33. DOI: 10.3748/wjg.v23.i47.8321
36. Dlugosz A., Nowak P., D’Amato M., Mohammadian Kermani G., Nyström J., Abdurahman S., Lindberg G. Increased serum levels of lipopolysaccharide and antiflagellin antibodies in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil. 2015;27(12):1747–54. DOI: 10.1111/nmo.12670
37. Parkes G.C., Rayment N.B., Hudspith B.N., Petrovska L., Lomer M.C., Brostoff J., Whelan K., Sanderson J.D. Distinct microbial populations exist in the mucosa-associated microbiota of sub-groups of irritable bowel syndrome. Neurogastroenterol Motil. 2012;24(1):31–9. DOI: 10.1111/j.1365-982.2011.01803.x
38. Jeffery I.B., O’Toole P.W., Öhman L., Claesson M.J., Deane J., Quigley E.M., Simrén M. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut. 2012;61(7):997–1006. DOI: 10.1136/gutjnl-2011-301501
39. Shariati A., Fallah F., Pormohammad A., Taghipour A., Safari H., Chirani A.S., Sabour S., Alizadeh-Sani M., Azimi T. The possible role of bacteria, viruses, and parasites in initiation and exacerbation of irritable bowel syndrome. J Cell Physiol. 2019;234(6):8550–69. DOI: 10.1002/jcp.27828
40. Chen B.R., Du L.J., He H.Q., Kim J.J., Zhao Y., Zhang Y.W., Luo L., Dai N. Fructo-oligosaccharide intensifies visceral hypersensitivity and intestinal inflammation in a stress-induced irritable bowel syndrome mouse model. World J Gastroenterol. 2017 21;23(47):8321–33. DOI: 10.3748/wjg.v23.i47.8321
41. Stark D., van Hal S., Marriott D., Ellis J., Harkness J. Irritable bowel syndrome: a review on the role of intestinal protozoa and the importance of their detection and diagnosis. Int J Parasitol. 2007;37(1):11–20.
42. Parkes G.C., Rayment N.B., Hudspith B.N., Petrovska L., Lomer M.C., Brostoff J., Whelan K., Sanderson J.D. Distinct microbial populations exist in the mucosa-associated microbiota of sub-groups of irritable bowel syndrome. Neurogastroenterol Motil. 2012;24(1):31–9. DOI: 10.1111/j.1365-982.2011.01803.x
43. Bures J., Cyrany J., Kohoutova D., Förstl M., Rejchrt S., Kvetina J. et al. Small intestinal bacterial overgrowth syndrome. World J Gastroenterol. 2010;16:2978–90.
44. Shariati A., Fallah F., Pormohammad A., Taghipour A., Safari H., Chirani A.S., Sabour S., Alizadeh-Sani M., Azimi T. The possible role of bacteria, viruses, and parasites in initiation and exacerbation of irritable bowel syndrome. J Cell Physiol. 2019;234(6):8550–69. DOI: 10.1002/jcp.27828
45. Ghoshal U.C., Shukla R., Ghoshal U. Small Intestinal Bacterial Overgrowth and Irritable Bowel Syndrome: A Bridge between Functional Organic Dichotomy. Gut Liver. 2017;11(2):196–208. DOI: 10.5009/gnl16126
46. Stark D., van Hal S., Marriott D., Ellis J., Harkness J. Irritable bowel syndrome: a review on the role of intestinal protozoa and the importance of their detection and diagnosis. Int J Parasitol. 2007;37(1):11–20.
47. Triantafyllou K., Chang C., Pimentel M. Methanogens, methane and gastrointestinal motility. J Neurogastroenterol Motil. 2014;20(1):31–40. DOI: 10.5056/jnm.2014.20.1.31
48. Bures J., Cyrany J., Kohoutova D., Förstl M., Rejchrt S., Kvetina J. et al. Small intestinal bacterial overgrowth syndrome. World J Gastroenterol. 2010;16:2978–90.
49. Chassard C., Dapoigny M., Scott K.P., Crouzet L., Del’homme C., Marquet P., Martin J.C., Pickering G., Ardid D., Eschalier A., Dubray C., Flint H.J., Bernalier-Donadille A. Functional dysbiosis within the gut microbiota of patients with constipated-irritable bowel syndrome. Aliment Pharmacol Ther. 2012. DOI: 10.1111/j.1365-2036.2012.05007.x
50. Ghoshal U.C., Shukla R., Ghoshal U. Small Intestinal Bacterial Overgrowth and Irritable Bowel Syndrome: A Bridge between Functional Organic Dichotomy. Gut Liver. 2017;11(2):196–208. DOI: 10.5009/gnl16126
51. El-Salhy M., Gundersen D. Diet in irritable bowel syndrome. Nutr J. 2015;14:36. DOI: 10.1186/s12937-015-0022-3
52. Triantafyllou K., Chang C., Pimentel M. Methanogens, methane and gastrointestinal motility. J Neurogastroenterol Motil. 2014;20(1):31–40. DOI: 10.5056/jnm.2014.20.1.31
53. Murphy E.A., Velazquez K.T., Herbert K.M. Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk. Curr Opin Clin Nutr Metab Care. 2015;18(5):515–20. DOI: 10.1097/MCO.0000000000000209
54. Chassard C., Dapoigny M., Scott K.P., Crouzet L., Del’homme C., Marquet P., Martin J.C., Pickering G., Ardid D., Eschalier A., Dubray C., Flint H.J., Bernalier-Donadille A. Functional dysbiosis within the gut microbiota of patients with constipated-irritable bowel syndrome. Aliment Pharmacol Ther. 2012. DOI: 10.1111/j.1365-2036.2012.05007.x
55. Madsen L., Myrmel L.S., Fjære E., Liaset B., Kristiansen K. Links between Dietary Protein Sources, the Gut Microbiota, and Obesity. Front Physiol. 2017;8:1047. DOI: 10.3389/fphys.2017.01047
56. El-Salhy M., Gundersen D. Diet in irritable bowel syndrome. Nutr J. 2015;14:36. DOI: 10.1186/s12937-015-0022-3
57. Gibson P.R. The evidence base for efficacy of the low FODMAP diet in irritable bowel syndrome: is it ready for prime time as a first-line therapy? J GastroenterolHepatol. 2017;32 Suppl 1:32–5. DOI: 10.1111/jgh.13693
58. Murphy E.A., Velazquez K.T., Herbert K.M. Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk. Curr Opin Clin Nutr Metab Care. 2015;18(5):515–20. DOI: 10.1097/MCO.0000000000000209
59. Rhee S.H., Pothoulakis C., Mayer E.A. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 2009;6(5):306–14. DOI: 10.1038/nrgastro.2009.35
60. Madsen L., Myrmel L.S., Fjære E., Liaset B., Kristiansen K. Links between Dietary Protein Sources, the Gut Microbiota, and Obesity. Front Physiol. 2017;8:1047. DOI: 10.3389/fphys.2017.01047
61. Marteau P., Cuillerier E., Meance S., Gerhardt M.F., Myara A., Bouvier M., Bouley C., Tondu F., Bommelaer G., Grimaud J.C. Bifidobacterium animalis strain DN-173 010 shortens the colonic transit time in healthy women: a double-blind, randomized, controlled study. Aliment Pharmacol Ther. 2002;16(3):587–93.
62. Gibson P.R. The evidence base for efficacy of the low FODMAP diet in irritable bowel syndrome: is it ready for prime time as a first-line therapy? J GastroenterolHepatol. 2017;32 Suppl 1:32–5. DOI: 10.1111/jgh.13693
63. Yang Y.X., He M., Hu G., Wei J., Pages P., Yang X.H., Bourdu-Naturel S. Effect of a fermented milk containing Bifidobacterium lactis DN-173010 on Chinese constipated women. World J Gastroenterol. 2008;14(40):6237–43.
64. Rhee S.H., Pothoulakis C., Mayer E.A. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 2009;6(5):306–14. DOI: 10.1038/nrgastro.2009.35
65. Agrawal A., Houghton L.A., Morris J., Reilly B., Guyonnet D., Goupil Feuillerat N., Schlumberger A., Jakob S., Whorwell P.J. Clinical trial: the effects of a fermented milk product containing Bifidobacterium lactis DN-173 010 on abdominal distension and gastrointestinal transit in irritable bowel syndrome with constipation. Aliment Pharmacol Ther. 2009;29(1):104–14.
66. Marteau P., Cuillerier E., Meance S., Gerhardt M.F., Myara A., Bouvier M., Bouley C., Tondu F., Bommelaer G., Grimaud J.C. Bifidobacterium animalis strain DN-173 010 shortens the colonic transit time in healthy women: a double-blind, randomized, controlled study. Aliment Pharmacol Ther. 2002;16(3):587–93.
67. Guyonnet D., Chassany O., Ducrotte P., Picard C., Mouret M., Mercier C.H. et al. Effect of a fermented milk containing Bifidobacterium animalis DN-173 010 on the health-related quality of life and symptoms in irritable bowel syndrome in adults in primary care: a multicentre, randomized, doubleblind, controlled trial. Aliment Pharmacol Ther. 2007;26:475–86. DOI: 10.1111/j.1365-2036.2007.03362.x
68. Yang Y.X., He M., Hu G., Wei J., Pages P., Yang X.H., Bourdu-Naturel S. Effect of a fermented milk containing Bifidobacterium lactis DN-173010 on Chinese constipated women. World J Gastroenterol. 2008;14(40):6237–43.
69. Guyonnet D., Woodcock A., Stefani B., Trevisan C., Hall C. Fermented milk containing Bifidobacterium lactis DN-173 010 improved self-reported digestive comfort amongst a general population of adults. A randomized, open-label, controlled, pilot study. J Dig Dis. 2009;10(1):61–70.
70. Agrawal A., Houghton L.A., Morris J., Reilly B., Guyonnet D., Goupil Feuillerat N., Schlumberger A., Jakob S., Whorwell P.J. Clinical trial: the effects of a fermented milk product containing Bifidobacterium lactis DN-173 010 on abdominal distension and gastrointestinal transit in irritable bowel syndrome with constipation. Aliment Pharmacol Ther. 2009;29(1):104–14.
71. Krammer H.J., von Seggern H., Schaumburg J., Neumer F. Effect of Lactobacillus casei Shirota on colonic transit time in patients with chronic constipation. Сoloproctology. 2011;33:109–13.
72. Guyonnet D., Chassany O., Ducrotte P., Picard C., Mouret M., Mercier C.H. et al. Effect of a fermented milk containing Bifidobacterium animalis DN-173 010 on the health-related quality of life and symptoms in irritable bowel syndrome in adults in primary care: a multicentre, randomized, doubleblind, controlled trial. Aliment Pharmacol Ther. 2007;26:475–86. DOI: 10.1111/j.1365-2036.2007.03362.x
73. Mazlyn M.M., Nagarajah L.H., Fatimah A., Norimah A.K., Goh K.L. Effects of a probiotic fermented milk on functional constipation: a randomized, doubleblind, placebo-controlled study. J Gastroenterol Hepatol. 2013;28(7):1141–7.
74. Guyonnet D., Woodcock A., Stefani B., Trevisan C., Hall C. Fermented milk containing Bifidobacterium lactis DN-173 010 improved self-reported digestive comfort amongst a general population of adults. A randomized, open-label, controlled, pilot study. J Dig Dis. 2009;10(1):61–70.
75. Soldi S., Vasileiadis S., Uggeri F., et al. Modulation of the gut microbiota composition by rifaximin in nonconstipated irritable bowel syndrome patients: a molecular approach. Clin Exp Gastroenterol. 2015;8:309–25. DOI: 10.2147/CEG.S89999
76. Krammer H.J., von Seggern H., Schaumburg J., Neumer F. Effect of Lactobacillus casei Shirota on colonic transit time in patients with chronic constipation. Сoloproctology. 2011;33:109–13.
77. Jalanka J., Major G., Murray K. et al. The Effect of Psyllium Husk on Intestinal Microbiota in Constipated Patients and Healthy Controls. Int J MolSci. 2019;20(2):433. DOI: 10.3390/ijms20020433
78. Mazlyn M.M., Nagarajah L.H., Fatimah A., Norimah A.K., Goh K.L. Effects of a probiotic fermented milk on functional constipation: a randomized, doubleblind, placebo-controlled study. J Gastroenterol Hepatol. 2013;28(7):1141–7.
79. Soldi S., Vasileiadis S., Uggeri F., et al. Modulation of the gut microbiota composition by rifaximin in nonconstipated irritable bowel syndrome patients: a molecular approach. Clin Exp Gastroenterol. 2015;8:309–25. DOI: 10.2147/CEG.S89999
80. Jalanka J., Major G., Murray K. et al. The Effect of Psyllium Husk on Intestinal Microbiota in Constipated Patients and Healthy Controls. Int J MolSci. 2019;20(2):433. DOI: 10.3390/ijms20020433
Review
For citations:
Shulpekova Yu.O., Babaeva G.H., Rusyaev V.Yu. Pathogenetic Substantiation of the Therapeutic Impact on Microbiota in Irritable Bowel Syndrome. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2019;29(4):7-14. (In Russ.) https://doi.org/10.22416/1382-4376-2019-29-4-7-14