Preview

Russian Journal of Gastroenterology, Hepatology, Coloproctology

Advanced search

Effect of Rifaximin and a Multi-Strain Probiotic on the Intestinal Microbiome and Cardiovascular Risk Indicators in Patients with Coronary Heart Disease

https://doi.org/10.22416/1382-4376-2019-29-4-38-49

Abstract

Aim. To assess the effect of rifaximin and a multi-strain probiotic on the intestinal microbiome and the indicators of cardiovascular risk in patients with coronary heart disease (CHD).
Materials and methods. A study conducted during the 2016–2019 period included 120 people over 50 years old divided into 3 groups. Group 1 comprised patients with coronary heart disease receiving standard treatment. Group 2 comprised patients with coronary heart disease receiving additionally a probiotic (Bifidobacterium bifidum no less than 1x109 CFU; Bifidobacterium longum no less than 1x109 CFU; Bifidobacterium infantis no less than 1x109 CFU; Lactobacillus rhamnosus no less than 1x109 CFU) within 28 days. Group 3 comprised CHD patients receiving rifaximin for 7 days followed by addition of the multi-strain probiotic under test for 21 days. Group 4 consisted of healthy individuals, comparable in age and sex with the examined CHD patients. In group 4, blood and stool tests were performed once to provide a comparison with group 1. TMAO concentration was determined using liquid chromatography–mass spectrometry. To study the composition of fecal microflora, 16S sequencing was used followed by a graphical representation of the results. The results were analysed using the IBM SPSS 22.0 statistical data processing software.
Results. An additional administration of the probiotic (Bifidobacterium bifidum no less than 1x109 CFU; Bifidobacterium longum no less than 1x109 CFU; Bifidobacterium infantis no less than 1x109 CFU; Lactobacillus rhamnosus no less than 1x109 CFU) is found to have no effect on the lipid profile and the platelet aggregation rate. Rifaximin therapy reduced the amount of total cholesterol, low density lipoproteins (LDL), very low density (VLDL) lipoproteins and triglycerides (p <0.05), although not affecting the level of high density lipoproteins (HDL). TMAO showed a statistically insignificant (p>0.05) downward trend in all groups. The composition of the fecal microbiota, at the end of administration of the probiotic, showed an increase in the proportion of bacteria of the Streptococcaceae, Lactobacillaceae, Enterobacteriaceae families and a decrease in the Ruminococcaceae family (p>0.05). After rifaximin therapy, a decrease in the proportion of bacteria of the Clostridiaceae (p <0.05) and Peptostreptococcaceae (p <0.05) families, a decrease in Enterobacteriaceae (p > 0.05) family and a decrease in the Clostridium and Escherichia/Shigella (p > 0.05) genera was observed. The use of the probiotic after a course of treatment with rifaximin did not have a significant effect on the composition of the microflora. In general, the high variability of fecal microbiota between different patients (significantly superior to intergroup differences) does not allow us to draw unambiguous conclusions.
Conclusions. The use of a multi-strain probiotic as an additional therapy in patients with coronary heart disease within 28 days did not have a significant effect on lipid metabolism, TMAO level and the composition of fecal microflora. The consecutive use of rifaximin and the probiotic had a beneficial effect on such factors as lipid metabolism (decrease in the level of total cholesterol, LDL, VLDL, triglycerides), but did not affect the concentration of TMAO and the composition of the intestinal microflora in patients with coronary heart disease.

About the Authors

E. A. Kashukh
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Post-graduate student, Propaedeutics of Internal Diseases Department

19991, Moscow, Pogodinskaya str., 1, building 1.



E. A. Poluektova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Dr. Sci. (Med.), Prof.,

19991, Moscow, Pogodinskaya str., 1, building 1.



A. V. Kudryavtseva
Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences
Russian Federation

Cand. Sci. (Med.), Laboratory Head, Laboratory of Molecular Biology

119991, Moscow, Vavilova str., 32.



G. S. Krasnov
Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences
Russian Federation

Cand. Sci. (Med.), Senior Researcher, Laboratory of Molecular Biology

119991, Moscow, Vavilova str., 32



V. I. Kazey
Laboratory Exacte Labs
Russian Federation

Cand. Sci. (Med.), Director

117246, Moscow, Nauchny Proezd, 20, building 2.



P. D. Sobolev
Laboratory Exacte Labs
Russian Federation

Employee

117246, Moscow, Nauchny Proezd, 20, building 2.



P. V. Gremyakova
Laboratory Exacte Labs
Russian Federation

Employee

117246, Moscow, Nauchny Proezd, 20, building 2.



V. T. Ivashkin
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Dr. Sci. (Med.), RAS Academician, Prof., Departmental Head, Propaedeutics of Internal Diseases Department, Medical Faculty

119991, Moscow, Pogodinskaya str., 1, building 1.



References

1. Wang Z., Klipfell E., Bennett B.J., Koeth R., Levison B.S. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63.

2. Wilson D.P., Gidding S.S. Atherosclerosis: Is a cure in sight? J Clin Lipidol. 2015;9(5 Suppl):S1–4. DOI: 10.1016/j.jacl.2015.06.010

3. Romano K.A., Vivas E.I., Amador-Noguez D., Rey F.E. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. MBio. 2015;6(2):e02481. DOI: 10.1128/mBio.02481-14

4. Fialho A., Kochhar G., Schenone A.L., Thota P., Mc-Cullough A.J., Shen B. Association Between Small Intestinal Bacterial Overgrowth by Glucose Breath Test and Coronary Artery Disease. Dig Dis Sci. 2018;63(2):412–21. DOI: 10.1007/s10620-017-4828-z

5. Tang W.H., Wang Z., Levison B.S., Koeth R.A., Britt E.B., Fu X. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. New Eng J Med. 2013;368:1575–84.

6. Wang Z., Klipfell E., Bennett B.J., Koeth R., Levison B.S. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63.

7. Collins H.L., Drazul-Schrader D., Sulpizio A.C., Koster P.D., Williamson Y., Adelman S.J., Owen K., Sanli T., Bellamine A. L-Carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE(-/-) transgenic mice expressing CETP. Atherosclerosis. 2016;244:29–37

8. Romano K.A., Vivas E.I., Amador-Noguez D., Rey F.E. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. MBio. 2015;6(2):e02481. DOI: 10.1128/mBio.02481-14

9. Kashukh Y.A., Ivashkin V.T. Probiotics, metabolism and the functional condition of cardio-vascular system. Russ J Gastroenterol Hepatol Coloproctol. 2016;26(1):8–14 (In Russ.) DOI: 10.22416/1382-4376-2016-26-1-8-14

10. Tang W.H., Wang Z., Levison B.S., Koeth R.A., Britt E.B., Fu X. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. New Eng J Med. 2013;368:1575–84.

11. Qiu L., Yang D., Tao X., Yu J., Xiong H., Wei H. Enterobacter aerogenes ZDY01 Attenuates Choline-Induced Trimethylamine N-Oxide Levels by Remodeling Gut Microbiota in Mice. J Microbiol Biotechnol. 2017;27(8):1491–9. DOI: 10.4014/jmb.1703.03039

12. Collins H.L., Drazul-Schrader D., Sulpizio A.C., Koster P.D., Williamson Y., Adelman S.J., Owen K., Sanli T., Bellamine A. L-Carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE(-/-) transgenic mice expressing CETP. Atherosclerosis. 2016;244:29–37

13. Tripolt N.J., Leber B., Triebl A., Köfeler H., Stadlbauer V., Sourij H. Effect of Lactobacillus casei Shirota supplementation on trimethylamine-N-oxide levels in patients with metabolic syndrome: An open-label, randomized study. Atherosclerosis. 2015;242(1):141–4.

14. Kashukh Y.A., Ivashkin V.T. Probiotics, metabolism and the functional condition of cardio-vascular system. Russ J Gastroenterol Hepatol Coloproctol. 2016;26(1):8–14 (In Russ.) DOI: 10.22416/1382-4376-2016-26-1-8-14

15. Boutagy N.E., Neilson A.P., Osterberg K.L., Smithson A.T., Englund T.R., Davy B.M., Hulver M.W., Davy K.P. Probiotic supplementation and trimethylamine-N-oxide production following a high-fat diet. Obesity (Silver Spring). 2015;23(12):2357–63.

16. Qiu L., Yang D., Tao X., Yu J., Xiong H., Wei H. Enterobacter aerogenes ZDY01 Attenuates Choline-Induced Trimethylamine N-Oxide Levels by Remodeling Gut Microbiota in Mice. J Microbiol Biotechnol. 2017;27(8):1491–9. DOI: 10.4014/jmb.1703.03039

17. Ivashkin V.T., Kashukh Ye.A. Impact of L-carnitine and phosphatidylcholine containing products on the proatherogenic metabolite TMAO production and gut microbiome changes in patients with coronary artery disease. Voprosy pitaniia [Problems of Nutrition]. 2019; 88 (4): 25-33. (In Russ.) doi: 10.24411/0042-8833-2019-10038

18. Tripolt N.J., Leber B., Triebl A., Köfeler H., Stadlbauer V., Sourij H. Effect of Lactobacillus casei Shirota supplementation on trimethylamine-N-oxide levels in patients with metabolic syndrome: An open-label, randomized study. Atherosclerosis. 2015;242(1):141–4.

19. Ponziani F.R., Zocco M.A., D’Aversa F., Pompili M., Gasbarrini A. Eubiotic properties of rifaximin: Disruption of the traditional concepts in gut microbiota modulation. World J Gastroenterol. 2017;23(25):4491–9. DOI: 10.3748/wjg.v23.i25.4491

20. Boutagy N.E., Neilson A.P., Osterberg K.L., Smithson A.T., Englund T.R., Davy B.M., Hulver M.W., Davy K.P. Probiotic supplementation and trimethylamine-N-oxide production following a high-fat diet. Obesity (Silver Spring). 2015;23(12):2357–63.

21. Maslennikov R.V., Driga A.A., Ivashkin K.V., Zharkova M.S., Mayevskaya M.V., Pavlov C.S., Arslanyan M.G., Musina N.B., Berezina Y.N., Ivashkin V.T. Small intestinal bacterial overgrowth syndrome and systemic inflammation in pathogenesis of hemodynamic changes at liver cirrhosis. Russ J Gastroenterol Hepatol Coloproctol. 2017;27(3):45–56 (In Russ.)]. DOI: 10.22416/1382-4376-2017-27-3-45-56

22. Ivashkin V.T., Kashukh Ye.A. Impact of L-carnitine and phosphatidylcholine containing products on the proatherogenic metabolite TMAO production and gut microbiome changes in patients with coronary artery disease. Voprosy pitaniia [Problems of Nutrition]. 2019; 88 (4): 25-33. (In Russ.) doi: 10.24411/0042-8833-2019-10038

23. Rerksuppaphol S., Rerksuppaphol L.A. Randomized Double-blind Controlled Trial of Lactobacillus acidophilus Plus Bifidobacterium bifidum versus Placebo in Patients with Hypercholesterolemia. J Clin Diagn Res. 2015;9(3):KC01–4. DOI: 10.7860/JCDR/2015/11867.5728

24. Ponziani F.R., Zocco M.A., D’Aversa F., Pompili M., Gasbarrini A. Eubiotic properties of rifaximin: Disruption of the traditional concepts in gut microbiota modulation. World J Gastroenterol. 2017;23(25):4491–9. DOI: 10.3748/wjg.v23.i25.4491

25. Tomaro-Duchesneau C., Jones M.L., Shah D., Jain P., Saha S., Prakash S. Cholesterol assimilation by Lactobacillus probiotic bacteria: an in vitro investigation. Biomed Res Int. 2014;2014:380316. DOI: 10.1155/2014/380316

26. Maslennikov R.V., Driga A.A., Ivashkin K.V., Zharkova M.S., Mayevskaya M.V., Pavlov C.S., Arslanyan M.G., Musina N.B., Berezina Y.N., Ivashkin V.T. Small intestinal bacterial overgrowth syndrome and systemic inflammation in pathogenesis of hemodynamic changes at liver cirrhosis. Russ J Gastroenterol Hepatol Coloproctol. 2017;27(3):45–56 (In Russ.)]. DOI: 10.22416/1382-4376-2017-27-3-45-56

27. Rerksuppaphol S., Rerksuppaphol L.A. Randomized Double-blind Controlled Trial of Lactobacillus acidophilus Plus Bifidobacterium bifidum versus Placebo in Patients with Hypercholesterolemia. J Clin Diagn Res. 2015;9(3):KC01–4. DOI: 10.7860/JCDR/2015/11867.5728

28. Tomaro-Duchesneau C., Jones M.L., Shah D., Jain P., Saha S., Prakash S. Cholesterol assimilation by Lactobacillus probiotic bacteria: an in vitro investigation. Biomed Res Int. 2014;2014:380316. DOI: 10.1155/2014/380316


Review

For citations:


Kashukh E.A., Poluektova E.A., Kudryavtseva A.V., Krasnov G.S., Kazey V.I., Sobolev P.D., Gremyakova P.V., Ivashkin V.T. Effect of Rifaximin and a Multi-Strain Probiotic on the Intestinal Microbiome and Cardiovascular Risk Indicators in Patients with Coronary Heart Disease. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2019;29(4):38-49. (In Russ.) https://doi.org/10.22416/1382-4376-2019-29-4-38-49

Views: 3120


ISSN 1382-4376 (Print)
ISSN 2658-6673 (Online)