Preview

Russian Journal of Gastroenterology, Hepatology, Coloproctology

Advanced search

Structure and Functions of Human Serum Albumin in Normal Conditions and in Patients with Liver Cirrhosis

https://doi.org/10.22416/1382-4376-2022-32-4-7-16

Abstract

The aim: to highlight the main points of albumin synthesis, posttranslational modifications and functions in normal conditions and in patients with liver cirrhosis.
Key points. Albumin is the most abundant protein in blood plasma. Along with oncotic properties, albumin performs transport, antioxidant, immunomodulatory and endothelioprotective functions. Serum albumin in patient with liver cirrhosis undergoes modifications, leading to functional impairment. Human serum albumin is a compaund of human mercaptalbumin with cysteine residues having a reducing ability, and oxidized human non-mercaptalbumin. The proportion of irreversibly oxidized non-mercaptalbumin-2 with impaired functional activity increases in liver cirrhosis.
Conclusion. The conformational structure of the albumin molecule plays an important role in maintaining its non-oncotic functions. Non-oncotic functions depend on albumin conformation. Further investigation of albumin conformation and albumin functions in patients with hepatic insufficiency can serve as an additional criterion for assessing the severity of cirrhosis and predictor of complications may become an additional criterion to new clinical applications and treatment strategies of liver failure.

About the Authors

A. A. Turkina
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Anastasia A. Turkina – PhD student, Department of Propaedeutics of Internal Diseases Gastroenterology and Hepatology

119435, Moscow, Pogodinskaya str., 1, build. 1 



M. V. Mayevskaya
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

 Marina V. Mayevskaya — Dr. Sci. (Med.), Professor 

119435, Moscow, Pogodinskaya str., 1, build. 1 



M. S. Zharkova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Maria S. Zharkova — Cand. Sci. (Med.), Head of the Hepatology Department, Vasilenko Clinic of Internal Disease Propaedeutics, Gastroenterology and  Hepatology 

119435, Moscow, Pogodinskaya str., 1, build. 1 



V. T. Ivashkin
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Vladimir T. Ivashkin — Dr. Sci. (Med.), RAS Academician, Prof., Head of the Department of Propaedeutics of Internal Diseases, Gastroenterology and Hepatology 

119435, Moscow, Pogodinskaya str., 1, build. 1 



References

1. Karimia M., Bahramia S.B, Ravaric S.B., Zangabadd P.S., Mirshekarie H., Bozorgomidf M., et al. Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv. 2016;13(11):1609–23. DOI: 10.1080/17425247.2016.1193149

2. Klygunenko E.N., Zozulya O.A. Human serum albumin (past and future). Emergency Medicine. 2017;5(84):26-30 (In Russ.) DOI: 10.22141/2224-0586.5.84.2017.109356

3. Gounden V., Vashisht R., Jialal I. Hypoalbuminemia. 2021. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2021.

4. Fanali G., Di Masi A., Trezza V., Marino M., Fasano M., Ascenzi P. Human serum albumin: from bench to bedside. Mol Asp Med. 2012;33:209–90. DOI: 10.1016/j.mam.2011.12.002

5. Gryzunov Yu.A. Properties of albumin binding centers: a method of investigation in biological fluids and the experience of its application to assess the state of the body: dissertation for the degree of Dr. Sci. (Med.). Moscow: Research Institute of Physico-Chemical Medicine, 2003.

6. Maevskaya M.V., Zharkova M.S. Role of human albumin in the management of liver cirrhosis. Meditsinskiy sovet = Medical Council. 2020;5:62–9 (In Russ.). DOI: 10.21518/2079-701X-2020-5-62-69

7. Rabbani G., Ahn S.N. Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. Biomac, 2018. DOI: 10.1016/j.ijbiomac.2018.11.053

8. Pagel W. Paracelsus: an Introduction to philosophical medicine in the Era of the Renaissance. Basel, Karger. 1982:126–202.

9. Maciążek-Jurczyk M., Szkudlarek A., Chudzik M., Pożycka J., Sułkowska A. Alteration of human serum albumin binding properties induced by modifications: A review. Spectrochim Acta A Mol Biomol Spectrosc. 2018;188:675–83. DOI: 10.1016/j.saa.2017.05.023

10. Peters Т.J. All about albumin: biochemistry, genetics, and medical applications. San Diego: Academic Press, 1996. DOI: 10.1002/food.19970410631

11. Peters T.J. Serum albumin. Adv Protein Chem. 1985;37:161–245. DOI: 10.1016/s0065-3233(08)60065-0

12. Meloun B., Morávek L., Kostka V. Complete amino acid sequence of human serum albumin. FEBS Lett. 1975;58(1):134–7. DOI: 10.1016/0014-5793(75)80242-0

13. Kragh-Hansen U., Chuang V.T., Otagiri M. Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biol Pharm Bull. 2002;25:695–704. DOI: 10.1248/bpb.25.695

14. Quinlan G.J., Martin G.S., Evans T.W. Albumin: biochemical properties and therapeutic potential. Hepatology. 2005;41:1211–9. DOI: 10.1002/hep.20720

15. Carter D.C., He X.M., Munson S.H., Twigg P.D., Gernert K.M., Broom M.B., et al. Three-dimensional structure of human serum albumin. Science. 1989;244(4909):1195–8. DOI: 10.1126/science.2727704

16. Sugio S., Kashima A., Mochizuki S., Noda M., Kobayashi K. Crystal structure of human serum albumin at 2.5 A resolution. Protein Eng. 1999;12(6):439–46. DOI: 10.1093/protein/12.6.439

17. Zunszain P.A., Ghuman J., McDonagh A.F., Curry S. Crystallographic analysis of human serum albumin complexed with 4Z,15E-bilirubin-IXalpha. J Mol Biol. 2008;381(2):394–406. DOI: 10.1016/j.jmb.2008.06.016

18. Birkett D.J., Myers S.P., Sudlow G. Effects of fatty acids on two specific drug binding sites on human serum albumin. Mol Pharmacol. 1977;13(6):987–92.

19. Sudlow G., Birkett D.J., Wade D.N. Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol. 1976;12(6):1052–61.

20. Maciążek-Jurczyk M., Szkudlarek A., Chudzik M., Pożycka J., Sułkowska A. Alteration of human serum albumin binding properties induced by modifications: A review. Spectrochim Acta A Mol Biomol Spectrosc. 2018;188:675–83. DOI: 10.1016/j.saa.2017.05.023

21. Hayashi T., Suda K., Imai H., Era S. Simple and sensitive high-performance liquid chromatographic method for the investigation of dynamic changes in the redox state of rat serum albumin. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;772(1):139–46. DOI: 10.1016/s1570-0232(02)00068-5

22. Lotosh N.Yu., Savelyev S.V., Selishcheva A.A. Glycation of albumin in vitro at normal and elevated glucose concentrations. Pathogenesis. 2015;13(2):42–6 (In Russ.).

23. Kubota K., Nakayama A., Takehana K., Kawakami A., Yamada N., Suzuki E. A simple stabilization method of reduced albumin in blood and plasma for the reduced/oxidized albumin ratio measurement. Int J Biomed Sci. 2009;5(3):293–301.

24. Wada Y., Takeda Y., Kuwahata M. Potential Role of Amino Acid/Protein Nutrition and Exercise in Serum Albumin Redox State. Nutrients. 2017;10(1):17. DOI: 10.3390/nu10010017

25. Setoyama H., Tanaka M., Nagumo K., Naoe H., Watanabe T., Yoshimaru Y., et al. Oral branched-chain amino acid granules improve structure and function of human serum albumin in cirrhotic patients. J Gastroenterol. 2017;52(6):754–65. DOI: 10.1007/s00535-016-1281-2

26. Stauber R.E., Spindelboeck W., Haas J., Putz-Bankuti C., Stadlbauer V., Lackner C., et al. Human nonmercaptalbumin-2: a novel prognostic marker in chronic liver failure. Ther Apher Dial. 2014;18(1):74–8. DOI: 10.1111/1744-9987.12024

27. Sen S., Williams R., Jalan R. The pathophysiological basis of acute-on-chronic liver failure. Liver. 2002;22:5–13. DOI: 10.1034/j.1600-0676.2002.00001.x

28. Moriwaki H., Miwa Y., Tajika M., Kato M., Fukushima H., Shiraki M. Branched-chain amino acids as a protein- and energy-source in liver cirrhosis. Biochem. Biophys. Res. Commun. 2004;313:405–9. DOI: 10.1016/j.bbrc.2003.07.016

29. Raoufinia R., Mota A., Keyhanvar N., Safari F., Shamekhi S., Abdolalizadeh J. Overview of Albumin and Its Purification Methods. Adv Pharm Bull. 2016;6(4):495–507. DOI: 10.15171/apb.2016.063

30. Komander D. The emerging complexity of protein ubiquitination. Biochem Soc Trans. 2009;37(Pt 5):937–53. DOI: 10.1042/BST0370937

31. Walayat S., Martin D., Patel J., Ahmed U., N. Asghar M., Pai A.U., et al. Role of albumin in cirrhosis: from a hospitalist's perspective. J Community Hosp Intern Med Perspect. 2017;7(1):8–14. DOI: 10.1080/20009666.2017.1302704

32. Bernardi M., Angeli P., Claria J., Moreau R., Gines P., Jalan R., et al. Albumin in decompensated cirrhosis: new concepts and perspectives. Gut. 2020;69(6):1127–38. DOI: 10.1136/gutjnl-2019-318843

33. Henriksen J.H., Siemssen O., Krintel J.J., Malchow-Møller A., Bendtsen F., Ring-Larsen H. Dynamics of albumin in plasma and ascitic fluid in patients with cirrhosis. J Hepatol. 2001;34(1):53–60. DOI: 10.1016/s0168-8278(00)00009-x

34. Kimball S.R., Horetsky R.L., Jefferson L.S. Hormonal regulation of albumin gene expression in primary cultures of rat hepatocytes. Am J Physiol. 1995;268(Pt 1):E6–14. DOI: 10.1152/ajpendo.1995.268.1.E6

35. Nawa K., Nakamura T., Kumatori A., Noda C., Ichihara A. Glucocorticoid-dependent expression of the albumin gene in adult rat hepatocytes. J Biol Chem. 1986;261(36):16883–8.

36. Tufoni M., Baldassarre M., Zaccherini G., Antognoli A., Caraceni P. Hemodynamic and Systemic Effects of Albumin in Patients with Advanced Liver Disease. Curr Hepatol Rep. 2020;1–12. DOI: 10.1007/s11901-020-00521-1

37. Peters T. All about albumin. Elsevier, 1995. DOI: 10.1016/B978-012552110-9/50004-0

38. Garcia-Martinez R., Caraceni P., Bernardi M., Gines P., Arroyo V., Jalan R. Albumin: pathophysiologic basis of its role in the treatment of cirrhosis and its complications. Hepatology. 2013;58:1836–46. DOI: 10.1002/hep.26338

39. Taverna M., Marie A.L., Mira J.P., Guidet B. Specific antioxidant properties of human serum albumin. Ann Intensive Care. 2013;3(1):4. DOI: 10.1186/2110-5820-3-4

40. Roche M., Rondeau P., Singh N.R., Tarnus E., Bourdon E. The antioxidant properties of serum albumin. FEBS Lett. 2008;582:1783–7. DOI: 10.1016/j.febslet.2008.04.057

41. Rezaei F., Vione D. Effect of pH on Zero Valent Iron Performance in Heterogeneous Fenton and Fenton-Like Processes: A Review. Molecules. 2018;23(12):3127. DOI: 10.3390/molecules23123127

42. Shevtsova A, Gordiienko I, Tkachenko V, Ushakova G. Ischemia-Modified Albumin: Origins and Clinical Implications. Dis Markers. 2021:9945424. DOI: 10.1155/2021/9945424

43. Wang Y., Xiong H., Xiuhua Z., Wang S. Electrochemical study of bovine serum albumin damage induced by Fenton reaction using tris (2,2-bipyridyl) cobalt (III) perchlorate as the electroactive indicator. Electrochimica Act. 2012;67:147–51. DOI: 10.1016/j.electacta.2012.02.010

44. Mishra K., Ojha H., Kallepalli S., Alok A., Kumar Chaudhury N. Protective effect of ferulic acid on ionizing radiation induced damage in bovine serum albumin. Int J Radiat Res. 2014;12(2):113–21.

45. Khosravifarsani M., Monfared A.S., Pouramir M., Zabihi E. Effects of Fenton Reaction on Human Serum Albumin: An In Vitro Study. Electron Physician. 2016;8(9):2970–6. DOI: 10.19082/2970

46. Turell L., Carballal S., Botti H., Radi R., Alvarez B. Oxidation of the albumin thiol to sulfenic acid and its implications in the intravascular compartment. Braz J Med Biol Res. 2009;42(4):305–11. DOI: 10.1590/s0100-879x2009000400001

47. Gioannini T.L., Zhang D., Teghanemt A., Weiss J.P. An essential role for albumin in the interaction of endotoxin with lipopolysaccharide-binding protein and sCD14 and resultant cell activation. J Biol Chem. 2002;277(49):47818–25. DOI: 10.1074/jbc.M206404200

48. Jürgens G., Müller M., Garidel P., Koch M.H., Nakakubo H., Blume A., et al. Investigation into the interaction of recombinant human serum albumin with Re-lipopolysaccharide and lipid A. J Endotoxin Res. 2002;8(2):115–26. DOI: 10.1179/096805102125000263

49. Yang J., Petersen C.E., Ha C.E., Bhagavan N.V. Structural insights into human serum albumin-mediated prostaglandin catalysis. Protein Sci. 2002;11(3):538–45. DOI: 10.1110/ps.28702

50. Casulleras M., Alcaraz-Quiles J., Duran-Güell M., Flores-Costa R., Titos E, López-Vicario C., Horrillo R., et al. FRI-111-albumin modulates endosomal TLR9 signaling in human peripheral leukocytes: a mechanism for its anti-inflammatory role in ACLF. J Hepatol. 2019;70:e436. DOI: 10.1016/s0618-8278(19)30856-4

51. Di Masi A., Leboffe L., Polticelli F., Tonon F., Zennaro C., Caterino M., et al. Human serum albumin is an essential component of the host defense mechanism against Clostridium difficile intoxication. J Infect Dis. 2018; 218:1424–35. DOI: 10.1093/infdis/jiy338

52. Qiao R., Siflinger-Birnboim A., Lum H., Tiruppathi C., Malik A.B. Albumin and Ricinus communis agglutinin decrease endothelial permeability via interactions with matrix. Am J Phys. 1993; 265:C439–46. DOI: 10.1152/ajpcell.1993.265.2.C439

53. Prajapati K.D., Sharma S.S., Roy N. Current perspectives on potential role of albumin in neuroprotection. Rev Neurosci. 2011;22(3):355–63. DOI: 10.1515/RNS.2011.028

54. Аnguizola J., Matsuda R., Barnaby O.S., Hoy K.S., Wa C., DeBolt E., et al. Glycation of human serum albumin. Clinica Chimica Acta. 2013;425:64–76. DOI: 10.1016/j.cca.2013.07.013

55. Raghavet A., Ahmad J. Glycated serum albumin: A potential disease marker and an intermediate index of diabetes control. Diabetes Metabo Syndr. 2014;8(4):245–51.

56. Freitas P.A.C., Ehlert L.R., Camargo J.L. Glycated albumin: a potential biomarker in diabetes. Arch Endocrinol Metab. 2017;61(3):296–304. DOI: 10.1590/2359-3997000000272

57. Neelofar K., Arif Z., Alam K., Ahmad J. Hyperglycemia induced structural and functional changes in human serum albumin of diabetic patients: a physico-chemical study. Mol Biosyst. 2016;12(8):2481–9. DOI: 10.1039/c6mb00324a

58. Okabe N., Hashizume N. Drug binding properties of glycosylated human serum albumin as measured by fluorescence and circular dichroism. Biol Pharm Bull. 1994;17(1):16–21. DOI: 10.1248/bpb.17.16

59. Matsuda R., Li Z., Zheng X., Hage D.S. Analysis of multi-site drug-protein interactions by high-performance affinity chromatography: Binding by glimepiride to normal or glycated human serum albumin. J Chromatogr A. 2015;1408:133–44. DOI: 10.1016/j.chroma.2015.07.012

60. Koizumi K., Ikeda C., Ito M., Suzuki J., Kinoshita T., Yasukawa K.,et al. Influence of glycosylation on the drug binding of human serum albumin. Biomed Chromatogr. 1998;12(4):203–10. DOI: 10.1002/(SICI)1099-0801(199807/08)12:4<203::AID-BMC736>3.0.CO;2-L

61. Dozio E., Di Gaetano N., Findeisen P., Corsi Romanelli M.M. Glycated albumin: from biochemistry and laboratory medicine to clinical practice. Endocrine. 2017;55(3):682–90. DOI: 10.1007/s12020-016-1091-6

62. Paradela-Dobarro B., Bravo S.B., Rozados-Luís A., et al. Inflammatory effects of in vivo glycated albumin from cardiovascular patients. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie. 2019;113:108763. DOI: 10.1016/j.biopha.2019.108763

63. Zendjabil M. Glycated albumin. Clin Chim Acta. 2020;502:240–4. DOI: 10.1016/j.cca.2019.11.007

64. Domenicali M., Baldassarre M., Giannone F.A., Naldi M., Mastroroberto M., Biselli M., et al. Posttranscriptional changes of serum albumin: clinical and prognostic significance in hospitalized patients with cirrhosis. Hepatology. 2014;60(6):1851–60. DOI: 10.1002/hep.27322

65. Alcaraz-Quiles J., Casulleras M., Oettl K., Titos E., Flores-Costa R., Duran-Güell M., et al. Oxidized Albumin Triggers a Cytokine Storm in Leukocytes Through P38 Mitogen-Activated Protein Kinase: Role in Systemic Inflammation in Decompensated Cirrhosis. Hepatology. 2018;68(5):1937–52. DOI: 10.1002/hep.30135

66. Liu J., Han P., Wu J., Gong J., Tian D. Prevalence and predictive value of hypocalcemia in severe COVID-19 patients. J Infect Public Health. 2020;13(9):1224–8. DOI: 10.1016/j.jiph.2020.05.029

67. Wu M.A., Fossali T., Pandolfi L., Carsana L., Ottolina D., Frangipane V., et al. Hypoalbuminemia in COVID-19: assessing the hypothesis for underlying pulmonary capillary leakage. J Intern Med. 2021;289(6):861–72. DOI: 10.1111/joim.13208

68. Violi F., Ceccarelli G., Loffredo L., Alessandri F., Cipollone F., D'ardes D., et al. Albumin supplementation dampens hypercoagulability in COVID-19: a preliminary report. Thromb Haemost. Thromb Haemost. 2021;121(1):102–5. DOI: 10.1055/s-0040-1721486

69. Rabbani G., Ahn S.N. Review: Roles of human serum albumin in prediction, diagnoses and treatment of COVID-19. Int J Biol Macromol. 2021;193(Pt A):948–55. DOI: 10.1016/j.ijbiomac.2021.10.095

70. Turkina A., Maevskaya M., Zharkova M., Ivashkin V. Effective albumin as a novel biomarker in the assessment of Child-Pugh liver cirrhosis. United European Gastroenterol J. 2021;9(S8);221. DOI: 10.1002/ueg2.12140


Review

For citations:


Turkina A.A., Mayevskaya M.V., Zharkova M.S., Ivashkin V.T. Structure and Functions of Human Serum Albumin in Normal Conditions and in Patients with Liver Cirrhosis. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2022;32(4):7-16. https://doi.org/10.22416/1382-4376-2022-32-4-7-16

Views: 1499


ISSN 1382-4376 (Print)
ISSN 2658-6673 (Online)