Preview

Российский журнал гастроэнтерологии, гепатологии, колопроктологии

Расширенный поиск

Уремические токсины микробного происхождения: роль в патогенезе коморбидной патологии у пациентов с хронической болезнью почек

https://doi.org/10.22416/1382-4376-2023-33-3-7-15

Аннотация

Цель публикации. Проанализировать значение уремических токсинов микробного происхождения (УТМП) в патогенезе коморбидной патологии у пациентов с хронической болезнью почек (ХБП).

Основные положения. Повышенная экскреция продуктов азотистого обмена в кишечник при ХБП ассоциирована с уремическим дисбиозом; изменениями метаболической активности микробиоты и синдромом повышенной эпителиальной проницаемости кишечника; которые во многом обусловливают накопление во внутренних средах организма УТМП: индоксил сульфата; р-крезил сульфата; триметиламин-N-оксида и др. Результаты исследований последних лет позволяют рассматривать эти соединения в качестве самостоятельного фактора риска неблагоприятных исходов у лиц с ХБП вследствие прогрессирования дисфункции почек до терминальной стадии; а также частых сердечно-сосудистых; неврологических; минерально-костных; алиментарных и других осложнений.

Выводы. УТМП являются одними из ключевых модуляторов перекрестной патогенетической взаимосвязи между кишечником и почками. Воздействие на кишечную микробиоту можно считать перспективной стратегией предупреждения осложнений; связанных с уремией.

Об авторах

М. О. Пятченков
ФГБВОУ ВО «Военно-медицинская академия им. С.М. Кирова» Министерства обороны Российской Федерации
Россия

Пятченков Михаил Олегович — кандидат медицинских наук, старший преподаватель кафедры нефрологии и эфферентной терапии 

194044, г. Санкт-Петербург, ул. Академика Лебедева, 6



А. А. Власов
ФГБВОУ ВО «Военно-медицинская академия им. С.М. Кирова» Министерства обороны Российской Федерации
Россия

Власов Андрей Александрович — кандидат медицинских наук, соискатель 2-й кафедры (терапии усовершенствования врачей) 

194044, г. Санкт-Петербург, ул. Академика Лебедева, 6



Е. В. Щербаков
ФГБВОУ ВО «Военно-медицинская академия им. С.М. Кирова» Министерства обороны Российской Федерации
Россия

Щербаков Евгений Вячеславович — врач-нефролог клиники нефрологии и эфферентной терапии 

194044, г. Санкт-Петербург, ул. Академика Лебедева, 6



С. П. Саликова
ФГБВОУ ВО «Военно-медицинская академия им. С.М. Кирова» Министерства обороны Российской Федерации
Россия

Саликова Светлана Петровна — доктор медицинских наук, доцент 2-й кафедры (терапии усовершенствования врачей) 

194044, г. Санкт-Петербург, ул. Академика Лебедева, 6



Список литературы

1. Vanholder R., Fouque D., Glorieux G., Heine G.H., Kanbay M., Mallamaci F., et al. European Renal Association European Dialysis; Transplant Association (ERA-EDTA) European Renal; Cardiovascular Medicine (EURECA-m) working group. Clinical management of the uraemic syndrome in chronic kidney disease. Lancet Diabetes Endocrinol. 2016;4(4):360–73. DOI: 10.1016/S2213-8587(16)00033-4

2. Koppe L., Fouque D., Soulage C.O. The role of gut microbiota and diet on uremic retention solutes production in the context of chronic kidney disease. Toxins (Basel). 2018;10(4):155. DOI: 10.3390/toxins10040155

3. Aronov P.A., Luo F.J., Plummer N.S., Quan Z., Holmes S., Hostetter T.H., et al. Colonic contribution to uremic solutes. J Am Soc Nephrol. 2011;22(9):1769–76. DOI: 10.1681/ASN.2010121220

4. Mishima E., Fukuda S., Mukawa C., Yuri A., Kanemitsu Y., Matsumoto Y., et al. Evaluation of the impact of gut microbiota on uremic solute accumulation by a CE-TOFMS-based metabolomics approach. Kidney Int. 2017;92(3):634–45. DOI: 10.1016/j.kint.2017.02.011

5. Vanholder R., Pletinck A., Schepers E., Glorieux G. Biochemical and clinical impact of organic uremic retention solutes: A comprehensive update. Toxins (Basel). 2018;10(1):33. DOI: 10.3390/toxins10010033

6. Kim S.M., Song I.H. The clinical impact of gut microbiota in chronic kidney disease. Korean J Intern Med. 2020;35(6):1305–16. DOI: 10.3904/kjim.2020.411

7. Chao C.T., Lin S.H. Uremic toxins and frailty in patients with chronic kidney disease: A molecular insight. Int J Mol Sci. 2021;22(12):6270. DOI: 10.3390/ijms22126270

8. Rysz J., Franczyk B., Ławiński J., Olszewski R., Ciałkowska-Rysz A., Gluba-Brzózka A. The impact of CKD on uremic toxins and gut microbiota. Toxins (Basel). 2021;13(4):252. DOI: 10.3390/toxins13040252

9. Лукичев Б.Г., Румянцев А.Ш., Акименко В. Микробиота кишечника и хроническая болезнь почек. Сообщение первое. Нефрология. 2018;22(4):57–73. [Lukichev B.G., Rumyantsev A.S., Akimenko V. Colonic microbiota and chronic kidney disease. Message one. Nephrology (Saint-Petersburg). 2018;22(4):57–73 (In Russ.)]. DOI: 10.24884/1561-6274-2018-22-4-57-73

10. Lau W.L., Savoj J., Nakata M.B., Vaziri N.D. Altered microbiome in chronic kidney disease: Systemic effects of gut-derived uremic toxins. Clin Sci (Lond). 2018;132(5):509–22. DOI: 10.1042/CS20171107

11. Wong J., Piceno Y.M., DeSantis T.Z., Pahl M., Andersen G.L., Vaziri N.D. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol. 2014;39(3):230–7. DOI: 10.1159/000360010

12. Vaziri N., Zhao Y., Pahl M. Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: The nature, mechanisms, consequences and potential treatment. Nephrol Dial Transplant. 2016;31(5):737–46. DOI: 10.1093/ndt/gfv095

13. Mafra D., Borges N.A., Cardozo L.F.M.F., Anjos J.S., Black A.P., Moraes C., et al. Red meat intake in chronic kidney disease patients: Two sides of the coin. Nutrition. 2018;46:26–32. DOI: 10.1016/j.nut.2017.08.015

14. Joossens M., Faust K., Gryp T., Nguyen A.T.L., Wang J., Eloot S., et al. Gut microbiota dynamics and uraemic toxins: One size does not fit all. Gut. 2019;68(12):2257–60. DOI: 10.1136/gutjnl-2018-317561

15. Пятченков М.О., Марков А.Г., Румянцев А.Ш. Структурно-функциональные нарушения кишечного барьера и хроническая болезнь почек. Обзор литературы. Часть I. Нефрология. 2022;26(1):10–26. DOI: 10.36485/1561-6274-2022-26-1-10-26

16. Glorieux G., Gryp T., Perna A. Gut-derived metabolites and their role in immune dysfunction in chronic kidney disease. Toxins (Basel). 2020;12(4):245. DOI: 10.3390/toxins12040245

17. Пятченков М.О., Румянцев А.Ш., Щербаков Е.В., Марков А.Г. Структурно-функциональные нарушения кишечного барьера и хроническая болезнь почек. Обзор литературы. Часть II. Нефрология. 2022;26(2):46–64. DOI: 10.36485/1561-6274-2022-26-2-46-64

18. Yang G., Wei J., Liu P., Zhang Q., Tian Y., Hou G., et al. Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism. 2021;117:154712. DOI: 10.1016/j.metabol.2021.154712

19. Chakaroun R.M., Massier L., Kovacs P. Gut microbiome, intestinal permeability, and tissue bacteria in metabolic disease: Perpetrators or bystanders? Nutrients. 2020;12(4):1082. DOI: 10.3390/nu12041082

20. Novakovic M., Rout A., Kingsley T., Kirchoff R., Singh A., Verma V., et al. Role of gut microbiota in cardiovascular diseases. World J Cardiol. 2020;12(4):110–22. DOI: 10.4330/wjc.v12.i4.110

21. Graboski A.L., Redinbo M.R. Gut-derived protein-bound uremic toxins. Toxins (Basel). 2020;12(9):590. DOI: 10.3390/toxins12090590

22. Watanabe H., Miyamoto Y., Otagiri M., Maruyama T. Update on the pharmacokinetics and redox properties of protein-bound uremic toxins. J Pharm Sci. 2011;100(9):3682–95. DOI: 10.1002/jps.22592

23. Bain M.A., Faull R., Fornasini G., Milne R.W., Evans A.M. Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis. Nephrol Dial Transplant. 2006;21(5):1300–4. DOI: 10.1093/ndt/gfk056

24. Miyazaki T., Ise M., Seo H., Niwa T. Indoxyl sulfate increases the gene expressions of TGF-beta 1, TIMP-1 and pro-alpha 1(I) collagen in uremic rat kidneys. Kidney Int Suppl. 1997;62:S15–22.

25. Ichii O., Otsuka-Kanazawa S., Nakamura T., Ueno M., Kon Y., Chen W, et al. Podocyte injury caused by indoxyl sulfate, a uremic toxin and aryl-hydrocarbon receptor ligand. PLoS One. 2014;9(9):e108448. DOI: 10.1371/journal.pone.0108448

26. Tang W.H., Wang Z., Kennedy D.J., Wu Y., Buffa J.A., Agatisa-Boyle B., et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015;116(3):448–55. DOI: 10.1161/CIRCRESAHA.116.305360

27. Watanabe H., Miyamoto Y., Honda D., Tanaka H., Wu Q., Endo M., et al. p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase. Kidney Int. 2013;83(4):582–92. DOI: 10.1038/ki.2012.448

28. Satoh M., Hayashi H., Watanabe M., Ueda K., Yamato H., Yoshioka T., et al. Uremic toxins overload accelerates renal damage in a rat model of chronic renal failure. Nephron Exp Nephrol. 2003;95(3):e111–8. DOI: 10.1159/000074327

29. Sun C.Y., Chang S.C., Wu M.S. Suppression of Klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation. Kidney Int. 2012;81(7):640–50. DOI: 10.1038/ki.2011.445

30. Shimizu H., Bolati D., Adijiang A., Adelibieke Y., Muteliefu G., Enomoto A., et al. Indoxyl sulfate downregulates renal expression of Klotho through production of ROS and activation of nuclear factor-ĸB. Am J Nephrol. 2011;33(4):319–24. DOI: 10.1159/000324885

31. Dou L., Sallée M., Cerini C., Poitevin S., Gondouin B., Jourde-Chiche N., et al. The cardiovascular effect of the uremic solute indole-3 acetic acid. J Am Soc Nephrol. 2015;26(4):876–87. DOI: 10.1681/ASN.2013121283

32. Wu I.W., Hsu K.H., Lee C.C., Sun C.Y., Hsu H.J., Tsai C.J., et al. p-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol Dial Transplant. 2011;26(3):938–47. DOI: 10.1093/ndt/gfq580

33. Sanchez-Gimenez R., Ahmed-Khodja W., Molina Y., Peiró O.M., Bonet G., Carrasquer A., et al. Gut microbiota-derived metabolites and cardiovascular disease risk: A systematic review of prospective cohort studies. Nutrients. 2022;14(13):2654. DOI: 10.3390/nu14132654

34. Huang Y., Xin W., Xiong J., Yao M., Zhang B., Zhao J. The intestinal microbiota and metabolites in the gut-kidney-heart axis of chronic kidney disease. Front Pharmacol. 2022;13:837500. DOI: 10.3389/fphar.2022.837500

35. Lekawanvijit S., Adrahtas A., Kelly D.J., Kompa A.R., Wang B.H., Krum H. Does indoxyl sulfate, a uraemic toxin, have direct effects on cardiac fibroblasts and myocytes? Eur Heart J. 2010;31(14):1771–9. DOI: 10.1093/eurheartj/ehp574

36. Han H., Zhu J., Zhu Z., Ni J., Du R., Dai Y., et al. p-Cresyl sulfate aggravates cardiac dysfunction associated with chronic kidney disease by enhancing apoptosis of cardiomyocytes. J Am Heart Assoc. 2015;4(6):e001852. DOI: 10.1161/JAHA.115.001852

37. Oshima N., Onimaru H., Matsubara H., Uchida T., Watanabe A., Takechi H., et al. Uric acid, indoxyl sulfate, and methylguanidine activate bulbospinal neurons in the RVLM via their specific transporters and by producing oxidative stress. Neuroscience. 2015;304:133–45. DOI: 10.1016/j.neuroscience.2015.07.055

38. Fujii H., Goto S., Fukagawa M. Role of uremic toxins for kidney, cardiovascular, and bone dysfunction. Toxins (Basel). 2018;10(5):202. DOI: 10.3390/toxins10050202

39. Assem M., Lando M., Grissi M., Kamel S., Massy Z.A., Chillon J.M., et al. The impact of uremic toxins on cerebrovascular and cognitive disorders. Toxins (Basel). 2018;10(7):303. DOI: 10.3390/toxins10070303

40. Rodrigues F.G., Ormanji M.S., Heilberg I.P., Bakker S.J.L., de Borst M.H. Interplay between gut microbiota, bone health and vascular calcification in chronic kidney disease. Eur J Clin Invest. 2021;51(9):e13588. DOI: 10.1111/eci.13588

41. Obokata M., Kurosawa K., Ishida H., Ito K., Ogawa T., Ando Y., et al. Echocardiography-based pressure-volume loop assessment in the evaluation for the effects of indoxyl sulfate on cardiovascular function. J Echocardiogr. 2019;17(1):35–43. DOI: 10.1007/s12574-018-0385-5

42. Wang C.P., Lu L.F., Yu T.H., Hung W.C., Chiu C.A., Chung F.M., et al. Serum levels of total p-cresylsulphate are associated with angiographic coronary atherosclerosis severity in stable angina patients with early stage of renal failure. Atherosclerosis. 2010;211(2):579–83. DOI: 10.1016/j.atherosclerosis.2010.03.036

43. Lin C.J., Pan C.F., Liu H.L., Chuang C.K., Jayakumar T., Wang T.J., et al. The role of protein-bound uremic toxins on peripheral artery disease and vascular access failure in patients on hemodialysis. Atherosclerosis. 2012;225(1):173–9. DOI: 10.1016/j.atherosclerosis.2012.07.012

44. Hu J., Zhong X., Liu Y., Yan J., Zhou D., Qin D., et al. Correlation between intestinal flora disruption and protein-energy wasting in patients with end-stage renal disease. BMC Nephrol. 2022;23(1):130. DOI: 10.1186/s12882-022-02762-2

45. Caldiroli L., Armelloni S., Eskander A., Messa P., Rizzo V., Margiotta E., et al. Association between the uremic toxins indoxyl-sulfate and p-cresyl-sulfate with sarcopenia and malnutrition in elderly patients with advanced chronic kidney disease. Exp Gerontol. 2021;147:111266. DOI: 10.1016/j.exger.2021.111266

46. Sato E., Saigusa D., Mishima E., Uchida T., Miura D., Morikawa-Ichinose T., et al. Impact of the oral adsorbent AST-120 on organ-specific accumulation of uremic toxins: LC-MS/MS and MS imaging techniques. Toxins (Basel). 2017;10(1):19. DOI: 10.3390/toxins10010019

47. Rodrigues G.G.C., Dellê H., Brito R.B.O., Cardoso V.O., Fernandes K.P.S., Mesquita-Ferrari R.A., et al. Indoxyl sulfate contributes to uremic sarcopenia by inducing apoptosis in myoblasts. Arch Med Res. 2020;51(1):21–9. DOI: 10.1016/j.arcmed.2019.12.020

48. Enoki Y., Watanabe H., Arake R., Fujimura R., Ishiodori K., Imafuku T., et al. Potential therapeutic interventions for chronic kidney disease-associated sarcopenia via indoxyl sulfate-induced mitochondrial dysfunction. J Cachexia Sarcopenia Muscle. 2017;8(5):735– 47. DOI: 10.1002/jcsm.12202

49. Changchien C.Y., Lin Y.H., Cheng Y.C., Chang H.H., Peng Y.S., Chen Y. Indoxyl sulfate induces myotube atrophy by ROS-ERK and JNK-MAFbx cascades. Chem Biol Interact. 2019;304:43–51. DOI: 10.1016/j.cbi.2019.02.023

50. Yabuuchi J., Ueda S., Yamagishi S.I., Nohara N., Nagasawa H., Wakabayashi K., et al. Association of advanced glycation end products with sarcopenia and frailty in chronic kidney disease. Sci Rep. 2020;10(1):17647. DOI: 10.1038/s41598-020-74673-x

51. Saoi M., Li A., McGlory C., Stokes T., von Allmen M.T., Phillips S.M., et al. Metabolic perturbations from step reduction in older persons at risk for sarcopenia: Plasma biomarkers of abrupt changes in physical activity. Metabolites. 2019;9(7):134. DOI: 10.3390/metabo9070134

52. Margiotta E., Caldiroli L., Callegari M.L., Miragoli F., Zanoni F., Armelloni S., et al. Association of sarcopenia and gut microbiota composition in older patients with advanced chronic kidney disease, investigation of the interactions with uremic toxins, inflammation and oxidative stress. Toxins (Basel). 2021;13(7):472. DOI: 10.3390/toxins13070472

53. Shyu J.F., Liu W.C., Zheng C.M., Fang T.C., Hou Y.C., Chang C.T., et al. Toxic effects of indoxyl sulfate on osteoclastogenesis and osteoblastogenesis. Int J Mol Sci. 2021;22(20):11265. DOI: 10.3390/ijms222011265

54. Nii-Kono T., Iwasaki Y., Uchida M., Fujieda A., Hosokawa A., Motojima M., et al. Indoxyl sulfate induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells. Kidney Int. 2007;71(8):738–43. DOI: 10.1038/sj.ki.5002097

55. Hirata J., Hirai K., Asai H., Matsumoto C., Inada M., Miyaura C., et al. Indoxyl sulfate exacerbates low bone turnover induced by parathyroidectomy in young adult rats. Bone. 2015;79:252–8. DOI: 10.1016/j.bone.2015.06.010

56. Goto S., Fujii H., Hamada Y., Yoshiya K., Fukagawa M. Association between indoxyl sulfate and skeletal resistance in hemodialysis patients. Ther Apher Dial. 2010;14(4):417–23. DOI: 10.1111/j.1744-9987.2010.00813.x

57. Barreto F.C., Barreto D.V., Canziani M.E., Tomiyama C., Higa A., Mozar A., et al. Association between indoxyl sulfate and bone histomorphometry in pre-dialysis chronic kidney disease patients. J Bras Nefrol. 2014;36(3):289–96. DOI: 10.5935/0101-2800.20140042

58. Lin C.J., Pan C.F., Chuang C.K., Liu H.L., Sun F.J., Wang T.J., et al. Association of indoxyl sulfate with fibroblast growth factor 23 in patients with advanced chronic kidney disease. Am J Med Sci. 2014;347(5):370–6. DOI: 10.1097/MAJ.0b013e3182989f26

59. Desjardins L., Liabeuf S., Oliveira R.B., Louvet L., Kamel S., Lemke H.D., et al.; European Uremic Toxin (EUTox) Work Group. Uremic toxicity and sclerostin in chronic kidney disease patients. Nephrol Ther. 2014;10(6):463–70. DOI: 10.1016/j.nephro.2014.04.002

60. Chiang C.K., Tanaka T., Inagi R., Fujita T., Nangaku M. Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner. Lab Invest. 2011;91(11):1564–71. DOI: 10.1038/labinvest.2011.114

61. Hamza E., Metzinger L., Metzinger-Le Meuth V. Uremic toxins affect erythropoiesis during the course of chronic kidney disease: A review. Cells. 2020;9(9):2039. DOI: 10.3390/cells9092039

62. Adelibieke Y., Shimizu H., Saito S., Mironova R., Niwa T. Indoxyl sulfate counteracts endothelial effects of erythropoietin through suppression of Akt phosphorylation. Circ J. 2013;77(5):1326–36. DOI: 10.1253/circj.cj-12-0884

63. Ahmed M.S., Abed M., Voelkl J., Lang F. Triggering of suicidal erythrocyte death by uremic toxin indoxyl sulfate. BMC Nephrol. 2013;14:244. DOI: 10.1186/1471-2369-14-244

64. Hamano H., Ikeda Y., Watanabe H., Horinouchi Y., Izawa-Ishizawa Y., Imanishi M., et al. The uremic toxin indoxyl sulfate interferes with iron metabolism by regulating hepcidin in chronic kidney disease. Nephrol Dial Transplant. 2018;33(4):586–97. DOI: 10.1093/ndt/gfx252

65. Bataille S., Pelletier M., Sallée M., Berland Y., McKay N., Duval A., et al. Indole 3-acetic acid, indoxyl sulfate and paracresyl-sulfate do not influence anemia parameters in hemodialysis patients. BMC Nephrol. 2017;18(1):251. DOI: 10.1186/s12882-017-0668-5

66. Sun C.Y., Li J.R., Wang Y.Y., Lin S.Y., Ou Y.C., Lin C.J., et al. Indoxyl sulfate caused behavioral abnormality and neurodegeneration in mice with unilateral nephrectomy. Aging (Albany NY). 2021;13(5):6681–701. DOI: 10.18632/aging.202523

67. Watanabe K., Sato E., Mishima E., Watanabe M., Abe T., Takahashi N., et al. Effect of uremic toxins on hippocampal cell damage: Analysis in vitro and in rat model of chronic kidney disease. Heliyon. 2021;7(2):e06221. DOI: 10.1016/j.heliyon.2021.e06221

68. Lin Y.T., Wu P.H., Tsai Y.C., Hsu Y.L., Wang H.Y., Kuo M.C., et al. Indoxyl sulfate induces apoptosis through oxidative stress and mitogen-activated protein kinase signaling pathway inhibition in human astrocytes. J Clin Med. 2019;8(2):191. DOI: 10.3390/jcm8020191

69. Karbowska M., Hermanowicz J.M., Tankiewicz-Kwedlo A., Kalaska B., Kaminski T.W., Nosek K., et al. Neurobehavioral effects of uremic toxin-indoxyl sulfate in the rat model. Sci Rep. 2020;10(1):9483. DOI: 10.1038/s41598-020-66421-y

70. Liabeuf S., Pepin M., Franssen C.F.M., Viggiano D., Carriazo S., Gansevoort R.T., et al.; CONNECT Action (Cognitive Decline in Nephro-Neurology European Cooperative Target). Chronic kidney disease and neurological disorders: Are uraemic toxins the missing piece of the puzzle? Nephrol Dial Transplant. 2021;37(Suppl 2):ii33–44. DOI: 10.1093/ndt/gfab223

71. Koppe L., Pillon N.J., Vella R.E., Croze M.L., Pelletier C.C., Chambert S., et al. p-Cresyl sulfate promotes insulin resistance associated with CKD. J Am Soc Nephrol. 2013;24(1):88–99. DOI: 10.1681/ASN.2012050503

72. Minakuchi H., Wakino S., Hosoya K., Sueyasu K., Hasegawa K., Shinozuka K., et al. The role of adipose tissue asymmetric dimethylarginine/dimethylarginine dimethylaminohydrolase pathway in adipose tissue phenotype and metabolic abnormalities in subtotally nephrectomized rats. Nephrol Dial Transplant. 2016;31(3):413–23. DOI: 10.1093/ndt/gfv367

73. Deng M., Li X., Li W., Gong J., Zhang X., Ge S., et al. Short-chain fatty acids alleviate hepatocyte apoptosis induced by gut-derived protein-bound uremic toxins. Front Nutr. 2021;8:756730. DOI: 10.3389/fnut.2021.756730

74. Martin C.E., Clotet-Freixas S., Farragher J.F., Hundemer G.L. Have we just scratched the surface? A narrative review of uremic pruritus in 2020. Can J Kidney Health Dis. 2020;7:2054358120954024. DOI: 10.1177/2054358120954024

75. Yabuuchi N., Sagata M., Saigo C., Yoneda G., Yamamoto Y., Nomura Y., et al. Indoxyl sulfate as a mediator involved in dysregulation of pulmonary aquaporin-5 in acute lung injury caused by acute kidney injury. Int J Mol Sci. 2016;18(1):11. DOI: 10.3390/ijms18010011


Рецензия

Для цитирования:


Пятченков М.О., Власов А.А., Щербаков Е.В., Саликова С.П. Уремические токсины микробного происхождения: роль в патогенезе коморбидной патологии у пациентов с хронической болезнью почек. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2023;33(3):7-15. https://doi.org/10.22416/1382-4376-2023-33-3-7-15

For citation:


Pyatchenkov M.O., Vlasov A.A., Sherbakov E.V., Salikova S.P. Microbial-Derived Uremic Toxins: Role in the Pathogenesis of Comorbidities in Patients with Chronic Kidney Disease. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2023;33(3):7-15. https://doi.org/10.22416/1382-4376-2023-33-3-7-15

Просмотров: 711


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.


ISSN 1382-4376 (Print)
ISSN 2658-6673 (Online)