The Role of Macrophages in the Pathogenesis of Celiac Disease
https://doi.org/10.22416/1382-4376-2024-34-4-86-93
Abstract
Aim: to present data on the involvement of macrophages in the pathogenesis of celiac disease and the development of possible treatment methods for this disease aimed at changing the function of macrophages.
Key points. Celiac disease is an autoimmune disease with a characteristic serological (antibodies to tissue transglutaminase, endomysium, deamidated gliadin peptides) and histological profile (inflammatory infiltration of the villous epithelium by lymphocytes and their atrophy, crypt hyperplasia) caused by gluten consumption in genetically predisposed individuals. Macrophages, as key cells that provide a link between innate and adaptive immunity, are of significant importance in the pathogenesis of celiac disease. Gliadin peptides stimulate the activation of macrophages according to the proinflammatory phenotype with the production of cytokines, which causes the immune response of T-helpers 1 and T-helpers 17. The result of these processes is the development of an inflammatory reaction and damage to the intestinal mucosa due to the production of matrix metalloproteinases and reactive oxygen species by macrophages. Therapeutic tactics for celiac disease today include a gluten-free diet, which is not so easy to follow. Of interest is the study of the possibility of using polyphenols in celiac disease, which are capable of precipitating gliadins and inhibiting the polarization of macrophages towards a proinflammatory phenotype, while simultaneously stimulating an increase in the population of macrophages of an anti-inflammatory phenotype associated with a decrease in tissue damage.
Conclusion. Impaired macrophage function/differentiation results in either inadequate, excessive immune activation or failure to mount effective protective immune responses against pathogens, which may result in the development of gastrointestinal diseases. Studying the involvement of macrophages at different stages of celiac disease progression is important for the development of new treatments for this disease.
About the Authors
A. I. KhavkinRussian Federation
Anatoly I. Khavkin, Dr. Sci. (Med.), Professor, Head of the Department, Professor of the Department
Department of Gastroenterology and Dietetics named after A.V. Mazurin; Department of Pediatrics with a Course in Pediatric Surgical Diseases
115093; Bolshaya Serpukhovskaya str., 62; Moscow; Belgorod
E. V. Loshkova
Russian Federation
Elena V. Loshkova, Cand. Sci. (Med.), Associate Professor, Leading Researcher, Deputy Chief Physician for Clinical and Expert Work, Leading Researcher
Scientific and Organizational Department; Institute of Higher and Continuing Professional Education; Scientific and Clinical Department of Cystic Fibrosis
141009; Kominterna str., 23A, build. 1; Moscow
E. I. Kondratieva
Russian Federation
Elena I. Kondratieva, Dr. Sci. Med., Professor, Deputy Director, Head of the
Department
Scientific and Clinical Department of Cystic Fibrosis; Institute of Higher and Continuing Professional Education; Department of Genetic and Respiratory Diseases
115522; Moskvorechye str. 1; Moscow; Tomsk
N. S. Shapovalova
Russian Federation
Natalia S. Shapovalova, Cand. Sci. (Med.), Leading Researcher
Department of Pediatrics
141009; Kominterna str., 23A, build. 1; Moscow; Mytishchi
I. R. Grishkevich
Russian Federation
Ivan R. Grishkevich, Student
Faculty of Pediatrics
634050; Moskovsky Trakt, 2; Tomsk
I. V. Doroshenko
Russian Federation
Ivan V. Doroshenko, Student
Faculty of Pediatrics
634050; Moskovsky Trakt, 2; Tomsk
G. N. Yankina
Russian Federation
Galina N. Yankina, Dr. Sci. (Med.), Professor
Department of Hospital Pediatrics
634050; Moskovsky Trakt, 2; Tomsk
References
1. Fasano A., Catassi C. Clinical practice. Celiac disease. N Engl J Med. 2012;367(25):2419–26. DOI: 10.1056/NEJMcp1113994
2. Caio G., Volta U., Sapone A., Leffler D.A., De Giorgio R., Catassi C., et al. Celiac disease : A comprehensive current review. BMC Med. 2019;17(1):142. DOI: 10.1186/s12916-019-1380-z
3. Ivarsson A., Persson L.A., Juto P., Peltonen M., Suhr O., Hernell O. High prevalence of undiagnosed coeliac disease in adults: A Swedish population-based study. J Intern Med. 1999;245(1):63–8. DOI: 10.1046/j.1365-2796.1999.00403.x
4. Mustalahti K., Catassi C., Reunanen A., Fabiani E., Heier M., McMillan S., et al.; Coeliac EU Cluster, Project Epidemiology. The prevalence of celiac disease in Europe: Results of a centralized, international mass screening project. Ann Med. 2010;42(8):587–95. DOI: 10.3109/07853890.2010.505931
5. Gnodi E., Meneveri R., Barisani D. Celiac disease: From genetics to epigenetics. World J Gastroenterol. 2022;28(4):449–63. DOI: 10.3748/wjg.v28.i4.449
6. Loshkova E.V., Kondratyeva E.I., Zhekaite E.K., Klimov L.Ya., Ilyenkova N.A., Melyanovskaya Yu.L., et al. Associations of the VDR gene with clinical manifestations and complications of cystic fibrosis. PULMONOLOGIYA. 2023;33(4):443–53. (In Russ.) DOI: 10.18093/0869-0189-2023-33-4-443-453
7. Yankina G.N., Kondratieva E.I., Loshkova E.V., Doroshenko I.V., Rebrienko M.V., Rafikova Yu.S., et al. Cystic fibrosis: Comorbidity with other serious diseases. Experimental and Clinical Gastroenterology. 2023;3:98–111. (In Russ.) DOI: 10.31146/1682-8658-ecg-211-3-98-111
8. Shapovalova N.S., Novikova V.P., Yablokova E.A., Loshkova E.V., Erokhina M.I., Chibrina E.V., et al. Non-celiac gluten sensitivity: Approaches to differential diagnosis and potential biomarkers. Voprosy detskoi Dietologii. 2023;21(2):32–44. (In Russ.) DOI: 10.20953/1727-5784-2023-2-32-44
9. Leonard M.M., Bai Y., Serena G., Nickerson K.P., Camhi S., Sturgeon C., et al. RNA sequencing of intestinal mucosa reveals novel pathways functionally linked to celiac disease pathogenesis. PLoS One. 2019;14(4):e0215132. DOI: 10.1371/journal.pone.0215132
10. Loshkova E.V., Ponomarenko Y.B., Kondratieva E.I., Lebedev V.V., Kleschenko E.I. Genetic regulation of cytokine inflammation in oncohematological diseases. Perm Medical Journal. 2022;39(1):47–65. (In Russ.) DOI: 10.17816/pmj39147-65
11. Lavin Y., Winter D., Blecher-Gonen R., David E., Keren-Shaul H., Merad M., et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell. 2014;159(6):1312–26. DOI: 10.1016/j.cell.2014.11.018
12. Chiaranunt P., Tai S.L., Ngai L., Mortha A. Beyond immunity: Underappreciated functions of intestinal macrophages. Front Immunol. 2021;12:749708. DOI: 10.3389/fimmu.2021.749708
13. Franchi L., Muñoz-Planillo R., Núñez G. Sensing and reacting to microbes through the inflammasomes. Nat Immunol. 2012;13(4):325–32. DOI: 10.1038/ni.2231
14. Shaw M.H., Kamada N., Kim Y.G., Núñez G. Microbiota-induced IL-1β, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. J Exp Med. 2012;209(2):251–8. DOI: 10.1084/jem.20111703
15. Bain C.C., Schridde A. Origin, differentiation, and function of intestinal macrophages. Front Immunol. 2018;9:2733. DOI: 10.3389/fimmu.2018.02733
16. Mortha A., Chudnovskiy A., Hashimoto D., Bogunovic M., Spencer S.P., Belkaid Y., et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science. 2014;343(6178):1249288. DOI: 10.1126/science.1249288
17. Bernshtein B., Curato C., Ioannou M., Thaiss C.A., Gross-Vered M., Kolesnikov M., et al. IL-23-producing IL-10Rα-deficient gut macrophages elicit an IL-22-driven proinflammatory epithelial cell response. Sci Immunol. 2019;4(36):eaau6571. DOI: 10.1126/sciimmunol.aau6571
18. Rubtsov Y.P., Rasmussen J.P., Chi E.Y., Fontenot J., Castelli L., Ye X., et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008;28(4):546–58. DOI: 10.1016/j.immuni.2008.02.017
19. Kim Y.I., Song J.H., Ko H.J., Kweon M.N., Kang C.Y., Reinecker H.C., et al. CX3CR1+ macrophages and CD8+ T cells control intestinal IgA production. J Immunol. 2018;201(4):1287–94. DOI: 10.4049/jimmunol.1701459
20. Saha S., Aranda E., Hayakawa Y., Bhanja P., Atay S., Brodin N.P., et al. Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury. Nat Commun. 2016;7:13096. DOI: 10.1038/ncomms13096
21. Seno H., Miyoshi H., Brown S.L., Geske M.J., Colonna M., Stappenbeck T.S. Efficient colonic mucosal wound repair requires Trem2 signaling. Proc Natl Acad Sci USA. 2009;106(1):256–61. DOI: 10.1073/pnas.0803343106
22. Mabbott N.A., Donaldson D.S., Ohno H., Williams I.R., Mahajan A. Microfold (M) cells: Important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 2013;6(4):666–77. DOI: 10.1038/mi.2013.30
23. D'Angelo F., Bernasconi E., Schäfer M., Moyat M., Michetti P., Maillard M.H., et al. Macrophages promote epithelial repair through hepatocyte growth factor secretion. Clin Exp Immunol. 2013;174(1):60–72. DOI: 10.1111/cei.12157
24. Geng Z.H., Zhu Y., Li Q.L., Zhao C., Zhou P.H. Enteric nervous system: The Bridge Between The Gut Microbiota And Neurological Disorders. Front Aging Neurosci. 2022;14:810483. DOI: 10.3389/fnagi.2022.810483
25. De Schepper S., Verheijden S., Aguilera-Lizarraga J., Viola M.F., Boesmans W., Stakenborg N., et al. Self-maintaining gut macrophages are essential for intestinal homeostasis. Cell. 2019;176(3):676. DOI: 10.1016/j.cell.2019.01.010
26. Luo J., Qian A., Oetjen L.K., Yu W., Yang P., Feng J., et al. TRPV4 channel signaling in macrophages promotes gastrointestinal motility via direct effects on smooth muscle cells. Immunity. 2018;49(1):107–19.e4. DOI: 10.1016/j.immuni.2018.04.021
27. Avetisyan M., Rood J.E., Huerta Lopez S., Sengupta R., Wright-Jin E., Dougherty J.D., et al. Muscularis macrophage development in the absence of an enteric nervous system. Proc Natl Acad Sci U S A. 2018;115(18):4696–701. DOI: 10.1073/pnas.1802490115
28. Sehgal A., Donaldson D.S., Pridans C., Sauter K.A., Hume D.A., Mabbott N.A. The role of CSF1R-dependent macrophages in control of the intestinal stem-cell niche. Nat Commun. 2018;9(1):1272. DOI: 10.1038/s41467-018-03638-6
29. Tacke R., Hilgendorf I., Garner H., Waterborg C., Park K., Nowyhed H., et al. The transcription factor NR4A1 is essential for the development of a novel macrophage subset in the thymus. Sci Rep. 2015;5:10055. DOI: 10.1038/srep10055
30. Spear E.T., Mawe G.M. Enteric neuroplasticity and dysmotility in inflammatory disease: Key players and possible therapeutic targets. Am J Physiol Gastrointest Liver Physiol. 2019;317(6):G853–61. DOI: 10.1152/ajpgi.00206.2019
31. De Schepper S., Stakenborg N., Matteoli G., Verheijden S., Boeckxstaens G.E. Muscularis macrophages: Key players in intestinal homeostasis and disease. Cell Immunol. 2018;330:142–50. DOI: 10.1016/j.cellimm.2017.12.009
32. Cipriani G., Terhaar M.L., Eisenman S.T., Ji S., Linden D.R., Wright A.M., et al. Muscularis propria macrophages alter the proportion of nitrergic but not cholinergic gastric myenteric neurons. Cell Mol Gastroenterol Hepatol. 2019;7(3):689–91.e4. DOI: 10.1016/j.jcmgh.2019.01.005
33. Francis S.H., Busch J.L., Corbin J.D., Sibley D. cGMP-dependent protein kinases and cGMP phosphodies-terases in nitric oxide and cGMP action. Pharmacol Rev. 2010;62(3):525–63. DOI: 10.1124/pr.110.002907
34. Kulkarni S., Micci M.A., Leser J., Shin C., Tang S.C., Fu Y.Y., et al. Adult enteric nervous system in health is maintained by a dynamic balance between neuronal apoptosis and neurogenesis. Proc Natl Acad Sci USA. 2017;114(18):E3709–18. DOI: 10.1073/pnas.1619406114
35. Xue J., Schmidt S.V., Sander J., Draffehn A., Krebs W., Quester I., et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity. 2014;40(2):274–88. DOI: 10.1016/j.immuni.2014.01.006
36. Saqib U., Sarkar S., Suk K., Mohammad O., Baig M.S., Savai R. Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget. 2018;9(25):17937–50. DOI: 10.18632/oncotarget.24788
37. Bull D.M., Bookman M.A. Isolation and functional characterization of human intestinal mucosal lymphoid cells. J Clin Invest. 1977;59(5):966–74. DOI: 10.1172/JCI108719
38. Yip J.L.K., Balasuriya G.K., Spencer S.J., Hill-Yardin E.L. The role of intestinal macrophages in gastrointestinal homeostasis: Heterogeneity and implications in disease. Cell Mol Gastroenterol Hepatol. 2021;12(5):1701–18. DOI: 10.1016/j.jcmgh.2021.08.021
39. Guilliams M., Ginhoux F., Jakubzick C., Naik S.H., Onai N., Schraml B.U., et al. Dendritic cells, monocytes and macrophages: A unified nomenclature based on ontogeny. Nat Rev Immunol. 2014;14(8):571–8. DOI: 10.1038/nri3712
40. Abadie V., Jabri B. IL-15: A central regulator of celiac disease immunopathology. Immunol Rev. 2014;260(1):221–34. DOI: 10.1111/imr.12191
41. Lammers K.M., Khandelwal S., Chaudhry F., Kryszak D., Puppa E.L., Casolaro V., et al. Identification of a novel immunomodulatory gliadin peptide that causes interleukin-8 release in a chemokine receptor CXCR3-dependent manner only in patients with coeliac disease. Immunology. 2011;132(3):432–40. DOI: 10.1111/j.1365-2567.2010.03378.x
42. Hine A.M., Loke P. Intestinal macrophages in resolving inflammation. J Immunol. 2019;203(3):593–9. DOI: 10.4049/jimmunol.1900345
43. Molaaghaee-Rouzbahani S., Asri N., Jahani-Sherafat S., Amani D., Masotti A., Baghaei K., et al. The modulation of macrophage subsets in celiac disease pathogenesis. Immun Inflamm Dis. 2022;10(12):e741. DOI: 10.1002/iid3.741
44. Ma W.T., Gao F., Gu K., Chen D.K. The role of monocytes and macrophages in autoimmune diseases : A comprehensive review. Front Immunol. 2019;10:1140. DOI: 10.3389/fimmu.2019.01140
45. Tye-Din J.A., Galipeau H.J., Agardh D. Celiac disease : A review of current concepts in pathogenesis, prevention, and novel therapies. Front Pediatr. 2018;6:350. DOI: 10.3389/fped.2018.00350
46. Zhang C., Yang M., Ericsson A.C. Function of macrophages in disease: Current understanding on molecular mechanisms. Front Immunol. 2021;12:620510. DOI: 10.3389/fimmu.2021.620510
47. Jakobek L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 2015;175:556–67. DOI: 10.1016/j.foodchem.2014.12.013
48. Ribeiro M., Sousa T., Poeta P., Bagulho A.S., Igrejas G. Review of structural features and binding capacity of polyphenols to gluten proteins and peptides in vitro: Relevance to celiac disease. Antioxidants (Basel). 2020;9(6):463. DOI: 10.3390/antiox9060463
49. Girard A.L., Awika J.M. Effects of edible plant polyphenols on gluten protein functionality and potential applications of polyphenol-gluten interactions. Compr Rev Food Sci Food Saf. 2020;19(4):2164–99. DOI: 10.1111/1541-4337.12572
50. Gopalakrishnan S., Tripathi A., Tamiz A.P., Alkan S.S., Pandey N.B. Larazotide acetate promotes tight junction assembly in epithelial cells. Peptides. 2012;35(1):95–101. DOI: 10.1016/j.peptides.2012.02.016
51. Capozzi A., Vincentini O., Gizzi P., Porzia A., Longo A., Felli C., et al. Modulatory effect of gliadin peptide 10-mer on epithelial intestinal CACO-2 cell inflammatory response. PLoS One. 2013;8(6):e66561. DOI: 10.1371/journal.pone.0066561
52. Chojnacka K., Lewandowska U. The influence of polyphenol-rich extracts on the production of pro-inflammatory mediators in macrophages. J Physiol Pharmacol. 2021;72(2). DOI: 10.26402/jpp.2021.2.02
53. Shabani M., Sadeghi A., Hosseini H., Teimouri M., Babaei Khorzoughi R., Pasalar P., et al. Resveratrol alleviates obesity-induced skeletal muscle inflammation via decreasing M1 macrophage polarization and increasing the regulatory T cell population. Sci Rep. 2020;10(1):3791. DOI: 10.1038/s41598-020-60185-1
54. Hussain T., Tan B., Yin Y., Blachier F., Tossou M.C., Rahu N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid Med Cell Longev. 2016;2016:7432797. DOI: 10.1155/2016/7432797
55. Kim H.S., Quon M.J., Kim J.A. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol. 2014;2:187–95. DOI: 10.1016/j.redox.2013.12.022
56. Rodríguez-Daza M.C., Daoust L., Boutkrabt L., Pilon G., Varin T., Dudonné S., et al. Wild blueberry proanthocyanidins shape distinct gut microbiota profile and influence glucose homeostasis and intestinal phenotypes in high-fat high-sucrose fed mice. Sci Rep. 2020;10(1):2217. DOI: 10.1038/s41598-020-58863-1
57. González-Sarrías A., Romo-Vaquero M., García-Villalba R., Cortés-Martín A., Selma M.V., Espín J.C. The endotoxemia marker lipopolysaccharide-binding protein is reduced in overweight-obese subjects consuming pomegranate extract by modulating the gut microbiota: A randomized clinical trial. Mol Nutr Food Res. 2018;62(11):e1800160. DOI: 10.1002/mnfr.201800160
58. Van Buiten C.B., Yennawar N.H., Pacheco C.N., Hatzakis E., Elias R.J. Physicochemical interactions with (-)-epigallocatechin-3-gallate drive structural modification of celiac-associated peptide α2-gliadin (57-89) at physiological conditions. Food Funct. 2019;10(5):2997–3007. DOI: 10.1039/c9fo00553f
59. Farina F., Pisapia L., Laezza M., Serena G., Rispo A., Ricciolino S., et al. Effect of gliadin stimulation on HLA-DQ2.5 gene expression in macrophages from adult celiac disease patients. Biomedicines. 2021;10(1):63. DOI: 10.3390/biomedicines10010063
Review
For citations:
Khavkin A.I., Loshkova E.V., Kondratieva E.I., Shapovalova N.S., Grishkevich I.R., Doroshenko I.V., Yankina G.N. The Role of Macrophages in the Pathogenesis of Celiac Disease. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2024;34(4):86-93. https://doi.org/10.22416/1382-4376-2024-34-4-86-93