Preview

Russian Journal of Gastroenterology, Hepatology, Coloproctology

Advanced search

The Role of Macrophages in the Pathogenesis of Celiac Disease

https://doi.org/10.22416/1382-4376-2024-34-4-86-93

Abstract

Aim: to present data on the involvement of macrophages in the pathogenesis of celiac disease and the development of possible treatment methods for this disease aimed at changing the function of macrophages.

Key points. Celiac disease is an autoimmune disease with a characteristic serological (antibodies to tissue transglutaminase, endomysium, deamidated gliadin peptides) and histological profile (inflammatory infiltration of the villous epithelium by lymphocytes and their atrophy, crypt hyperplasia) caused by gluten consumption in genetically predisposed individuals. Macrophages, as key cells that provide a link between innate and adaptive immunity, are of significant importance in the pathogenesis of celiac disease. Gliadin peptides stimulate the activation of macrophages according to the proinflammatory phenotype with the production of cytokines, which causes the immune response of T-helpers 1 and T-helpers 17. The result of these processes is the development of an inflammatory reaction and damage to the intestinal mucosa due to the production of matrix metalloproteinases and reactive oxygen species by macrophages. Therapeutic tactics for celiac disease today include a gluten-free diet, which is not so easy to follow. Of interest is the study of the possibility of using polyphenols in celiac disease, which are capable of precipitating gliadins and inhibiting the polarization of macrophages towards a proinflammatory phenotype, while simultaneously stimulating an increase in the population of macrophages of an anti-inflammatory phenotype associated with a decrease in tissue damage.

Conclusion. Impaired macrophage function/differentiation results in either inadequate, excessive immune activation or failure to mount effective protective immune responses against pathogens, which may result in the development of gastrointestinal diseases. Studying the involvement of macrophages at different stages of celiac disease progression is important for the development of new treatments for this disease.

About the Authors

A. I. Khavkin
Research Clinical Institute of Childhood of the Ministry of Healthcare of the Moscow Region; Belgorod State National Research University
Russian Federation

Anatoly I. Khavkin, Dr. Sci. (Med.), Professor, Head of the Department, Professor of the Department

Department of Gastroenterology and Dietetics named after A.V. Mazurin; Department of Pediatrics with a Course in Pediatric Surgical Diseases

115093;  Bolshaya Serpukhovskaya str., 62; Moscow; Belgorod



E. V. Loshkova
Research Clinical Institute of Childhood of the Ministry of Healthcare of the Moscow Region; Research Center for Medical Genetics
Russian Federation

Elena V. Loshkova, Cand. Sci. (Med.), Associate Professor, Leading Researcher, Deputy Chief Physician for Clinical and Expert Work, Leading Researcher 

Scientific and Organizational Department; Institute of Higher and Continuing Professional Education; Scientific and Clinical Department of Cystic Fibrosis

141009; Kominterna str., 23A, build. 1; Moscow



E. I. Kondratieva
Research Clinical Institute of Childhood of the Ministry of Healthcare of the Moscow Region; Siberian State Medical University
Russian Federation

Elena I. Kondratieva, Dr. Sci. Med., Professor, Deputy Director, Head of the
Department

Scientific and Clinical Department of Cystic Fibrosis; Institute of Higher and Continuing Professional Education; Department of Genetic and Respiratory Diseases

115522; Moskvorechye str. 1; Moscow; Tomsk



N. S. Shapovalova
Research Clinical Institute of Childhood of the Ministry of Healthcare of the Moscow Region
Russian Federation

Natalia S. Shapovalova, Cand. Sci. (Med.), Leading Researcher

Department of Pediatrics

141009; Kominterna str., 23A, build. 1; Moscow; Mytishchi



I. R. Grishkevich
Siberian State Medical University
Russian Federation

Ivan R. Grishkevich, Student

Faculty of Pediatrics

634050; Moskovsky Trakt, 2; Tomsk



I. V. Doroshenko
Siberian State Medical University
Russian Federation

Ivan V. Doroshenko, Student

Faculty of Pediatrics

634050; Moskovsky Trakt, 2; Tomsk



G. N. Yankina
Siberian State Medical University
Russian Federation

Galina N. Yankina, Dr. Sci. (Med.), Professor

Department of Hospital Pediatrics

634050; Moskovsky Trakt, 2; Tomsk



References

1. Fasano A., Catassi C. Clinical practice. Celiac disease. N Engl J Med. 2012;367(25):2419–26. DOI: 10.1056/NEJMcp1113994

2. Caio G., Volta U., Sapone A., Leffler D.A., De Giorgio R., Catassi C., et al. Celiac disease : A comprehensive current review. BMC Med. 2019;17(1):142. DOI: 10.1186/s12916-019-1380-z

3. Ivarsson A., Persson L.A., Juto P., Peltonen M., Suhr O., Hernell O. High prevalence of undiagnosed coeliac disease in adults: A Swedish population-based study. J Intern Med. 1999;245(1):63–8. DOI: 10.1046/j.1365-2796.1999.00403.x

4. Mustalahti K., Catassi C., Reunanen A., Fabiani E., Heier M., McMillan S., et al.; Coeliac EU Cluster, Project Epidemiology. The prevalence of celiac disease in Europe: Results of a centralized, international mass screening project. Ann Med. 2010;42(8):587–95. DOI: 10.3109/07853890.2010.505931

5. Gnodi E., Meneveri R., Barisani D. Celiac disease: From genetics to epigenetics. World J Gastroenterol. 2022;28(4):449–63. DOI: 10.3748/wjg.v28.i4.449

6. Loshkova E.V., Kondratyeva E.I., Zhekaite E.K., Klimov L.Ya., Ilyenkova N.A., Melyanovskaya Yu.L., et al. Associations of the VDR gene with clinical manifestations and complications of cystic fibrosis. PULMONOLOGIYA. 2023;33(4):443–53. (In Russ.) DOI: 10.18093/0869-0189-2023-33-4-443-453

7. Yankina G.N., Kondratieva E.I., Loshkova E.V., Doroshenko I.V., Rebrienko M.V., Rafikova Yu.S., et al. Cystic fibrosis: Comorbidity with other serious diseases. Experimental and Clinical Gastroenterology. 2023;3:98–111. (In Russ.) DOI: 10.31146/1682-8658-ecg-211-3-98-111

8. Shapovalova N.S., Novikova V.P., Yablokova E.A., Loshkova E.V., Erokhina M.I., Chibrina E.V., et al. Non-celiac gluten sensitivity: Approaches to differential diagnosis and potential biomarkers. Voprosy detskoi Dietologii. 2023;21(2):32–44. (In Russ.) DOI: 10.20953/1727-5784-2023-2-32-44

9. Leonard M.M., Bai Y., Serena G., Nickerson K.P., Camhi S., Sturgeon C., et al. RNA sequencing of intestinal mucosa reveals novel pathways functionally linked to celiac disease pathogenesis. PLoS One. 2019;14(4):e0215132. DOI: 10.1371/journal.pone.0215132

10. Loshkova E.V., Ponomarenko Y.B., Kondratieva E.I., Lebedev V.V., Kleschenko E.I. Genetic regulation of cytokine inflammation in oncohematological diseases. Perm Medical Journal. 2022;39(1):47–65. (In Russ.) DOI: 10.17816/pmj39147-65

11. Lavin Y., Winter D., Blecher-Gonen R., David E., Keren-Shaul H., Merad M., et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell. 2014;159(6):1312–26. DOI: 10.1016/j.cell.2014.11.018

12. Chiaranunt P., Tai S.L., Ngai L., Mortha A. Beyond immunity: Underappreciated functions of intestinal macrophages. Front Immunol. 2021;12:749708. DOI: 10.3389/fimmu.2021.749708

13. Franchi L., Muñoz-Planillo R., Núñez G. Sensing and reacting to microbes through the inflammasomes. Nat Immunol. 2012;13(4):325–32. DOI: 10.1038/ni.2231

14. Shaw M.H., Kamada N., Kim Y.G., Núñez G. Microbiota-induced IL-1β, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. J Exp Med. 2012;209(2):251–8. DOI: 10.1084/jem.20111703

15. Bain C.C., Schridde A. Origin, differentiation, and function of intestinal macrophages. Front Immunol. 2018;9:2733. DOI: 10.3389/fimmu.2018.02733

16. Mortha A., Chudnovskiy A., Hashimoto D., Bogunovic M., Spencer S.P., Belkaid Y., et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science. 2014;343(6178):1249288. DOI: 10.1126/science.1249288

17. Bernshtein B., Curato C., Ioannou M., Thaiss C.A., Gross-Vered M., Kolesnikov M., et al. IL-23-producing IL-10Rα-deficient gut macrophages elicit an IL-22-driven proinflammatory epithelial cell response. Sci Immunol. 2019;4(36):eaau6571. DOI: 10.1126/sciimmunol.aau6571

18. Rubtsov Y.P., Rasmussen J.P., Chi E.Y., Fontenot J., Castelli L., Ye X., et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008;28(4):546–58. DOI: 10.1016/j.immuni.2008.02.017

19. Kim Y.I., Song J.H., Ko H.J., Kweon M.N., Kang C.Y., Reinecker H.C., et al. CX3CR1+ macrophages and CD8+ T cells control intestinal IgA production. J Immunol. 2018;201(4):1287–94. DOI: 10.4049/jimmunol.1701459

20. Saha S., Aranda E., Hayakawa Y., Bhanja P., Atay S., Brodin N.P., et al. Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury. Nat Commun. 2016;7:13096. DOI: 10.1038/ncomms13096

21. Seno H., Miyoshi H., Brown S.L., Geske M.J., Colonna M., Stappenbeck T.S. Efficient colonic mucosal wound repair requires Trem2 signaling. Proc Natl Acad Sci USA. 2009;106(1):256–61. DOI: 10.1073/pnas.0803343106

22. Mabbott N.A., Donaldson D.S., Ohno H., Williams I.R., Mahajan A. Microfold (M) cells: Important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 2013;6(4):666–77. DOI: 10.1038/mi.2013.30

23. D'Angelo F., Bernasconi E., Schäfer M., Moyat M., Michetti P., Maillard M.H., et al. Macrophages promote epithelial repair through hepatocyte growth factor secretion. Clin Exp Immunol. 2013;174(1):60–72. DOI: 10.1111/cei.12157

24. Geng Z.H., Zhu Y., Li Q.L., Zhao C., Zhou P.H. Enteric nervous system: The Bridge Between The Gut Microbiota And Neurological Disorders. Front Aging Neurosci. 2022;14:810483. DOI: 10.3389/fnagi.2022.810483

25. De Schepper S., Verheijden S., Aguilera-Lizarraga J., Viola M.F., Boesmans W., Stakenborg N., et al. Self-maintaining gut macrophages are essential for intestinal homeostasis. Cell. 2019;176(3):676. DOI: 10.1016/j.cell.2019.01.010

26. Luo J., Qian A., Oetjen L.K., Yu W., Yang P., Feng J., et al. TRPV4 channel signaling in macrophages promotes gastrointestinal motility via direct effects on smooth muscle cells. Immunity. 2018;49(1):107–19.e4. DOI: 10.1016/j.immuni.2018.04.021

27. Avetisyan M., Rood J.E., Huerta Lopez S., Sengupta R., Wright-Jin E., Dougherty J.D., et al. Muscularis macrophage development in the absence of an enteric nervous system. Proc Natl Acad Sci U S A. 2018;115(18):4696–701. DOI: 10.1073/pnas.1802490115

28. Sehgal A., Donaldson D.S., Pridans C., Sauter K.A., Hume D.A., Mabbott N.A. The role of CSF1R-dependent macrophages in control of the intestinal stem-cell niche. Nat Commun. 2018;9(1):1272. DOI: 10.1038/s41467-018-03638-6

29. Tacke R., Hilgendorf I., Garner H., Waterborg C., Park K., Nowyhed H., et al. The transcription factor NR4A1 is essential for the development of a novel macrophage subset in the thymus. Sci Rep. 2015;5:10055. DOI: 10.1038/srep10055

30. Spear E.T., Mawe G.M. Enteric neuroplasticity and dysmotility in inflammatory disease: Key players and possible therapeutic targets. Am J Physiol Gastrointest Liver Physiol. 2019;317(6):G853–61. DOI: 10.1152/ajpgi.00206.2019

31. De Schepper S., Stakenborg N., Matteoli G., Verheijden S., Boeckxstaens G.E. Muscularis macrophages: Key players in intestinal homeostasis and disease. Cell Immunol. 2018;330:142–50. DOI: 10.1016/j.cellimm.2017.12.009

32. Cipriani G., Terhaar M.L., Eisenman S.T., Ji S., Linden D.R., Wright A.M., et al. Muscularis propria macrophages alter the proportion of nitrergic but not cholinergic gastric myenteric neurons. Cell Mol Gastroenterol Hepatol. 2019;7(3):689–91.e4. DOI: 10.1016/j.jcmgh.2019.01.005

33. Francis S.H., Busch J.L., Corbin J.D., Sibley D. cGMP-dependent protein kinases and cGMP phosphodies-terases in nitric oxide and cGMP action. Pharmacol Rev. 2010;62(3):525–63. DOI: 10.1124/pr.110.002907

34. Kulkarni S., Micci M.A., Leser J., Shin C., Tang S.C., Fu Y.Y., et al. Adult enteric nervous system in health is maintained by a dynamic balance between neuronal apoptosis and neurogenesis. Proc Natl Acad Sci USA. 2017;114(18):E3709–18. DOI: 10.1073/pnas.1619406114

35. Xue J., Schmidt S.V., Sander J., Draffehn A., Krebs W., Quester I., et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity. 2014;40(2):274–88. DOI: 10.1016/j.immuni.2014.01.006

36. Saqib U., Sarkar S., Suk K., Mohammad O., Baig M.S., Savai R. Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget. 2018;9(25):17937–50. DOI: 10.18632/oncotarget.24788

37. Bull D.M., Bookman M.A. Isolation and functional characterization of human intestinal mucosal lymphoid cells. J Clin Invest. 1977;59(5):966–74. DOI: 10.1172/JCI108719

38. Yip J.L.K., Balasuriya G.K., Spencer S.J., Hill-Yardin E.L. The role of intestinal macrophages in gastrointestinal homeostasis: Heterogeneity and implications in disease. Cell Mol Gastroenterol Hepatol. 2021;12(5):1701–18. DOI: 10.1016/j.jcmgh.2021.08.021

39. Guilliams M., Ginhoux F., Jakubzick C., Naik S.H., Onai N., Schraml B.U., et al. Dendritic cells, monocytes and macrophages: A unified nomenclature based on ontogeny. Nat Rev Immunol. 2014;14(8):571–8. DOI: 10.1038/nri3712

40. Abadie V., Jabri B. IL-15: A central regulator of celiac disease immunopathology. Immunol Rev. 2014;260(1):221–34. DOI: 10.1111/imr.12191

41. Lammers K.M., Khandelwal S., Chaudhry F., Kryszak D., Puppa E.L., Casolaro V., et al. Identification of a novel immunomodulatory gliadin peptide that causes interleukin-8 release in a chemokine receptor CXCR3-dependent manner only in patients with coeliac disease. Immunology. 2011;132(3):432–40. DOI: 10.1111/j.1365-2567.2010.03378.x

42. Hine A.M., Loke P. Intestinal macrophages in resolving inflammation. J Immunol. 2019;203(3):593–9. DOI: 10.4049/jimmunol.1900345

43. Molaaghaee-Rouzbahani S., Asri N., Jahani-Sherafat S., Amani D., Masotti A., Baghaei K., et al. The modulation of macrophage subsets in celiac disease pathogenesis. Immun Inflamm Dis. 2022;10(12):e741. DOI: 10.1002/iid3.741

44. Ma W.T., Gao F., Gu K., Chen D.K. The role of monocytes and macrophages in autoimmune diseases : A comprehensive review. Front Immunol. 2019;10:1140. DOI: 10.3389/fimmu.2019.01140

45. Tye-Din J.A., Galipeau H.J., Agardh D. Celiac disease : A review of current concepts in pathogenesis, prevention, and novel therapies. Front Pediatr. 2018;6:350. DOI: 10.3389/fped.2018.00350

46. Zhang C., Yang M., Ericsson A.C. Function of macrophages in disease: Current understanding on molecular mechanisms. Front Immunol. 2021;12:620510. DOI: 10.3389/fimmu.2021.620510

47. Jakobek L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 2015;175:556–67. DOI: 10.1016/j.foodchem.2014.12.013

48. Ribeiro M., Sousa T., Poeta P., Bagulho A.S., Igrejas G. Review of structural features and binding capacity of polyphenols to gluten proteins and peptides in vitro: Relevance to celiac disease. Antioxidants (Basel). 2020;9(6):463. DOI: 10.3390/antiox9060463

49. Girard A.L., Awika J.M. Effects of edible plant polyphenols on gluten protein functionality and potential applications of polyphenol-gluten interactions. Compr Rev Food Sci Food Saf. 2020;19(4):2164–99. DOI: 10.1111/1541-4337.12572

50. Gopalakrishnan S., Tripathi A., Tamiz A.P., Alkan S.S., Pandey N.B. Larazotide acetate promotes tight junction assembly in epithelial cells. Peptides. 2012;35(1):95–101. DOI: 10.1016/j.peptides.2012.02.016

51. Capozzi A., Vincentini O., Gizzi P., Porzia A., Longo A., Felli C., et al. Modulatory effect of gliadin peptide 10-mer on epithelial intestinal CACO-2 cell inflammatory response. PLoS One. 2013;8(6):e66561. DOI: 10.1371/journal.pone.0066561

52. Chojnacka K., Lewandowska U. The influence of polyphenol-rich extracts on the production of pro-inflammatory mediators in macrophages. J Physiol Pharmacol. 2021;72(2). DOI: 10.26402/jpp.2021.2.02

53. Shabani M., Sadeghi A., Hosseini H., Teimouri M., Babaei Khorzoughi R., Pasalar P., et al. Resveratrol alleviates obesity-induced skeletal muscle inflammation via decreasing M1 macrophage polarization and increasing the regulatory T cell population. Sci Rep. 2020;10(1):3791. DOI: 10.1038/s41598-020-60185-1

54. Hussain T., Tan B., Yin Y., Blachier F., Tossou M.C., Rahu N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid Med Cell Longev. 2016;2016:7432797. DOI: 10.1155/2016/7432797

55. Kim H.S., Quon M.J., Kim J.A. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol. 2014;2:187–95. DOI: 10.1016/j.redox.2013.12.022

56. Rodríguez-Daza M.C., Daoust L., Boutkrabt L., Pilon G., Varin T., Dudonné S., et al. Wild blueberry proanthocyanidins shape distinct gut microbiota profile and influence glucose homeostasis and intestinal phenotypes in high-fat high-sucrose fed mice. Sci Rep. 2020;10(1):2217. DOI: 10.1038/s41598-020-58863-1

57. González-Sarrías A., Romo-Vaquero M., García-Villalba R., Cortés-Martín A., Selma M.V., Espín J.C. The endotoxemia marker lipopolysaccharide-binding protein is reduced in overweight-obese subjects consuming pomegranate extract by modulating the gut microbiota: A randomized clinical trial. Mol Nutr Food Res. 2018;62(11):e1800160. DOI: 10.1002/mnfr.201800160

58. Van Buiten C.B., Yennawar N.H., Pacheco C.N., Hatzakis E., Elias R.J. Physicochemical interactions with (-)-epigallocatechin-3-gallate drive structural modification of celiac-associated peptide α2-gliadin (57-89) at physiological conditions. Food Funct. 2019;10(5):2997–3007. DOI: 10.1039/c9fo00553f

59. Farina F., Pisapia L., Laezza M., Serena G., Rispo A., Ricciolino S., et al. Effect of gliadin stimulation on HLA-DQ2.5 gene expression in macrophages from adult celiac disease patients. Biomedicines. 2021;10(1):63. DOI: 10.3390/biomedicines10010063


Review

For citations:


Khavkin A.I., Loshkova E.V., Kondratieva E.I., Shapovalova N.S., Grishkevich I.R., Doroshenko I.V., Yankina G.N. The Role of Macrophages in the Pathogenesis of Celiac Disease. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2024;34(4):86-93. https://doi.org/10.22416/1382-4376-2024-34-4-86-93

Views: 328


ISSN 1382-4376 (Print)
ISSN 2658-6673 (Online)