Preview

Russian Journal of Gastroenterology, Hepatology, Coloproctology

Advanced search

Metabolomic Profiling of Patients with Alcoholic Liver Disease and Non-Alcoholic Fatty Liver Disease Using Principal Component Analysis

https://doi.org/10.22416/1382-4376-2025-35-3-54-70

Abstract

Aim: to investigate the metabolomic profile of patients with alcoholic liver disease and non-alcoholic fatty liver disease.
Materials and methods. The present study included patients diagnosed with non-alcoholic fatty liver disease (NAFLD) (n = 44), patients diagnosed with alcoholic liver disease (ALD) (n = 40) and 14 healthy volunteers. The level of metabolites in the blood serum were determined via high-performance liquid chromatography and tandem mass spectrometry.
Results. In this study, a cross-sectional targeted metabolomic analysis of 96 serum metabolites was performed in patients. Statistical analysis using the principal component method identified six main factors, comprising metabolites from various metabolic pathways. Comparative analysis between patient groups and the control group revealed statistically significant differences in the metabolic activity of individual factors, collectively reflecting alterations in the metabolomic profile. Levels of acylcarnitines, uridine, metanephrine, asymmetric and total dimethylarginine were elevated in patients with NAFLD and ALD compared to the control group. Carnitine, short chain acylcarnitines, valine, leucine, lysine, and alanine were significantly higher in patients with NAFLD compared to those with ALD. In contrast, levels of tyrosine, epinephrine, and methionine were significantly increased in ALD patients compared to both NAFLD patients and healthy volunteers. Among patients with liver cirrhosis (both ALD and NAFLD), there was a noticeable trend toward altered metabolic activity of factors correlating with liver failure indicators and the FIB-4 index. As liver cirrhosis progressed, statistically significant changes in metabolite levels were observed across Child — Pugh classes, taking into account hypocoagulation, hypoalbuminemia, hyperbilirubinemia, the presence of ascites, and hepatic encephalopathy.

About the Authors

M. S. Reshetova
I.M. Sechenov First Moscow State Medical University (Sechenovskiy University)
Russian Federation

Maria S. Reshetova — Teaching Assistant of the Department of Internal Disease Propaedeutics, Gastroenterology and Hepatology

119435, Moscow, Pogodinskaya str., 1, build. 1



P. A. Markin
I.M. Sechenov First Moscow State Medical University (Sechenovskiy University)
Russian Federation

Pavel A. Markin — Cand. Sci. (Pharm.), Head of the Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology

119991, Moscow, Trubetskaya str., 8, build. 2



S. A. Appolonova
I.M. Sechenov First Moscow State Medical University (Sechenovskiy University)
Russian Federation

Svetlana A. Appolonova — Cand. Sci. (Chem.), Associate Professor of the Department of Pharmacology, Head of the Centre of Biopharmaceutical Analysis and Metabolomics, Institute of Translational Medicine and Biotechnology

119991, Moscow, Trubetskaya str., 8, build. 2 



K. M. Shestakova
I.M. Sechenov First Moscow State Medical University (Sechenovskiy University)
Russian Federation

Kseniia M. Shestakova — Cand. Sci. (Pharm.), Head of the Laboratory of Bioinformatics and Pharmacological Modelling of Biopharmaceutical Analysis and Metabolomics, Institute of Translational Medicine and Biotechnology

119991, Moscow, Trubetskaya str., 8, build. 2



O. A. Baydalin
I.M. Sechenov First Moscow State Medical University (Sechenovskiy University)

Oleg A. Baydalin — Research Assistant at the Department of Internal Disease Propaedeutics, Gastroenterology and Hepatology

119435, Moscow, Pogodinskaya str., 1, build. 1



I. A. Voloshin
I.M. Sechenov First Moscow State Medical University (Sechenovskiy University)
Russian Federation

Ilia A. Voloshin — Research Assistant at the Department of Internal Disease Propaedeutics, Gastroenterology and Hepatology

119435, Moscow, Pogodinskaya str., 1, build. 1



I. R. Yunusov
I.M. Sechenov First Moscow State Medical University (Sechenovskiy University)
Russian Federation

Ismail R. Yunusov — Student of the N.V. Sklifosovskiy Institute of Clinical Medicine

119435, Moscow, Bolshaya Pirogovskaya str., 2, build. 4



O. Yu. Zolnikova
I.M. Sechenov First Moscow State Medical University (Sechenovskiy University)
Russian Federation

Oxana Yu. Zolnikova — Dr. Sci. (Med.), Professor at the Department of Internal Disease Propaedeutics, Gastroenterology and Hepatology

119435, Moscow, Pogodinskaya str., 1, build. 1



R. V. Maslennikov
I.M. Sechenov First Moscow State Medical University (Sechenovskiy University)
Russian Federation

Roman V. Maslennikov — Cand. Sci. (Med.), Associate Professor of the Department of Internal Disease Propaedeutics, Gastroenterology and Hepatology

119435, Moscow, Pogodinskaya str., 1, build. 1



M. S. Zharkova
I.M. Sechenov First Moscow State Medical University (Sechenovskiy University)
Russian Federation

Maria S. Zharkova — Cand. Sci. (Med.), Head of the Hepatology Department of V.Kh. Vasilenko Clinic of Internal Diseases Propedeutics, Gastroenterology and Hepatology

119435, Moscow, Pogodinskaya str., 1, build. 1



V. T. Ivashkin
I.M. Sechenov First Moscow State Medical University (Sechenovskiy University)
Russian Federation

Vladimir T. Ivashkin— Dr. Sci. (Med.), Professor, Academician of the Russian Academy of Sciences, Head of the Department of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Director of V.Kh. Vasilenko Clinic of Internal Diseases Propedeutics, Gastroenterology and Hepatology

119435, Moscow, Pogodinskaya str., 1, build. 1



References

1. Li S., Looby N., Chandran V., Kulasingam V. Challenges in the metabolomics-based biomarker validation pipeline. Metabolites. 2024;14(4):200. DOI: 10.3390/metabo14040200

2. Liu J., Semiz S., van der Lee S.J., van der Spek A., Verhoeven A., van Klinken J.B., et al. Metabolomics based markers predict type 2 diabetes in a 14-year follow-up study. Metabolomics. 2017;13(9):104. DOI: 10.1007/s11306-017-1239-2

3. Shah S.H., Kraus W.E., Newgard C.B. Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: Form and function. Circulation. 2012;126(9):1110–20. DOI: 10.1161/CIRCULATIONAHA.111.060368

4. Shajahan-Haq A.N., Cheema M.S., Clarke R. Application of metabolomics in drug resistant breast cancer research. Metabolites. 2015;5(1):100–18. DOI: 10.3390/metabo5010100

5. Friedman S.L., Neuschwander-Tetri B.A., Rinella M., Sanyal A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24(7):908–22. DOI: 10.1038/s41591-018-0104-9

6. Wegermann K., Henao R., Diehl A.M., Murphy S.K., Abdelmalek M.F., Moylan C.A. Branched chain amino acid transaminase 1 (BCAT1) is overexpressed and hypomethylated in patients with non-alcoholic fatty liver disease who experience adverse clinical events: A pilot study. PLoS One. 2018;13(9):e0204308. DOI: 10.1371/journal.pone.0204308

7. Wang T.J., Larson M.G., Vasan R.S., Cheng S., Rhee E.P., McCabe E., et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–53. DOI: 10.1038/nm.2307

8. Sánchez-Pintos P., de Castro M.J., Roca I., Rite S., López M., Couce M.L. Similarities between acylcarnitine profiles in large for gestational age newborns and obesity. Sci Rep. 2017;7(1):16267. DOI: 10.1038/s41598-017-15809-4

9. Тajiri K., Futsukaichi Y., Kobayashi S., Yasumura S., Takahara T., Minemura M., et al. L-carnitine for the treatment of overt hepatic encephalopathy in patients with advanced liver cirrhosis. J Nutr Sci Vitaminol (Tokyo). 2018;64(5):321–8. DOI: 10.3177/jnsv.64.321

10. Cheng S., Wiklund P., Autio R., Borra R., Ojanen X., Xu L., et al. Adipose tissue dysfunction and altered systemic amino acid metabolism are associated with non-alcoholic fatty liver disease. PLoS One. 2015;10(10):e0138889. DOI: 10.1371/journal.pone.0138889

11. Kakazu E., Sano A., Morosawa T., Inoue J., Ninomiya M., Iwata T., et al. Branched chain amino acids are associated with the heterogeneity of the area of lipid droplets in hepatocytes of patients with non-alcoholic fatty liver disease. Hepatol Res. 2019;49(8):860–71. DOI: 10.1111/hepr.13346

12. Holecek M., Kandar R., Sispera L., Kovarik M. Acute hyperammonemia activates branched-chain amino acid catabolism and decreases their extracellular concentrations: Different sensitivity of red and white muscle. Amino Acids. 2011;40(2):575–84. DOI: 10.1007/s00726-010-0679-z

13. Parkhitko A.A., Jouandin P., Mohr S.E., Perrimon N. Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging Cell. 2019;18(6):e13034. DOI: 10.1111/acel.13034

14. Pascale R.M., Peitta G., Simile M.M., Feo F. Alterations of methionine metabolism as potential targets for the prevention and therapy of hepatocellular carcinoma. Medicina (Kaunas). 2019;55(6):296. DOI: 10.3390/medicina55060296

15. Li Z., Wang F., Liang B., Su Y., Sun S., Xia S., et al. Methionine metabolism in chronic liver diseases: An update on molecular mechanism and therapeutic implication. Signal Transduct Target Ther. 2020;5(1):280. DOI: 10.1038/s41392-020-00349-7

16. Choi S., Dong B., Lin C.J., Heo M.J., Kim K.H., Sun Z., et al. Methyl-sensing nuclear receptor liver receptor homolog-1 regulates mitochondrial function in mouse hepatocytes. Hepatology. 2020;71(3):1055–69. DOI: 10.1002/hep.30884

17. Kalhan S.C., Edmison J., Marczewski S., Dasarathy S., Gruca L.L., Bennett C., et al. Methionine and protein metabolism in non-alcoholic steatohepatitis: Evidence for lower rate of transmethylation of methionine. Clin Sci (Lond). 2011;121(4):179–89. DOI: 10.1042/CS20110060

18. Tessari P., Vettore M., Millioni R., Puricelli L., Orlando R. Effect of liver cirrhosis on phenylalanine and tyrosine metabolism. Curr Opin Clin Nutr Metab Care. 2010;13(1):81–6. DOI: 10.1097/MCO.0b013e32833383af

19. Marrone G., Serra A., Miele L., Biolato M., Liguori A., Grieco A., et al. Branched chain amino acids in hepatic encephalopathy and sarcopenia in liver cirrhosis: Evidence and uncertainties. World J Gastroenterol. 2023;29(19):2905–15. DOI: 10.3748/wjg.v29.i19.2905

20. Dam G., Sørensen M., Buhl M., Sandahl T.D., Møller N., Ott P., et al. Muscle metabolism and whole blood amino acid profile in patients with liver disease. Scand J Clin Lab Invest. 2015;75(8):674–80.

21. Holeček M. Branched-chain amino acids and branchedchain keto acids in hyperammonemic states: Metabolism and as supplements. Metabolites. 2020;10(8):324. DOI: 10.3390/metabo10080324

22. Gaggini M., Carli F., Rosso C., Younes R., D’Aurizio R., Bugianesi E., et al. Altered metabolic profile and adipocyte insulin resistance mark severe liver fibrosis in patients with chronic liver disease. Int J Mol Sci. 2019;20(24):6333. DOI: 10.3390/ijms20246333

23. Lelou E., Corlu A., Nesseler N., Rauch C., Mallédant Y., Seguin P., et al. The role of catecholamines in pathophysiological liver processes. Cells. 2022;11(6):1021. DOI: 10.3390/cells11061021

24. Saccà L., Vigorito C., Cicala M., Corso G., Sherwin R.S. Role of gluconeogenesis in epinephrine-stimulated hepatic glucose production in humans. Am J Physiol. 1983;245(3):E294–302. DOI: 10.1152/ajpendo.1983.245.3.E294

25. Meyer C., Stumvoll M., Welle S., Woerle H.J., Haymond M., Gerich J. Relative importance of liver, kidney, and substrates in epinephrine-induced increased gluconeogenesis in humans. Am J Physiol Endocrinol Metab. 2003;285(4):E819–26. DOI: 10.1152/ajpendo.00145.2003

26. Rasouli M., Zahraie M. Suppression of VLDL associated triacylglycerol secretion by both alpha- and beta-adrenoceptor agonists in isolated rat hepatocytes. Eur J Pharmacol. 2006;545(2–3):109–14. DOI: 10.1016/j.ejphar.2006.06.066

27. Rasouli M., Mosavi-Mehr M., Tahmouri H. Liver denervation increases the levels of serum triglyceride and cholesterol via increases in the rate of VLDL secretion. Clin Res Hepatol Gastroenterol. 2012;36(1):60–5. DOI: 10.1016/j.clinre.2011.09.012

28. Parlesak A., Reisenauer C., Biermann J., Ratge D., Bode J.C., Bode C. Reversibility of increased formation of catecholamines in patients with alcoholic liver disease. Scand J Gastroenterol. 2004;39(1):60–6. DOI: 10.1080/00365520310007738

29. Reshetova M., Markin P., Appolonova S., Yunusov I. Zolnikova O., Bueverova E., et al. Tryptophan metabolites in the progression of liver diseases. Biomolecules. 2024;14(11):1449. DOI: 10.3390/biom14111449

30. Lovato C.M., Thévenot T., Borot S., Di Martino V., Qualls C.R., Urban F.K. 3rd, et al. Decreased maximal cortisol secretion rate in patients with cirrhosis: Relation to disease severity. JHEP Rep. 2021;3(3):100277. DOI: 10.1016/j.jhepr.2021.100277

31. Ferrigno A., Di Pasqua L.G., Berardo C., Richelmi P., Vairetti M. Liver plays a central role in asymmetric dimethylarginine-mediated organ injury. World J Gastroenterol. 2015;21(17):5131–7. DOI: 10.3748/wjg.v21.i17.5131

32. Zong Y., Li H., Liao P., Chen L., Pan Y., Zheng Y., et al. Mitochondrial dysfunction: Mechanisms and advances in therapy. Signal Transduct Target Ther. 2024;9(1):124. DOI: 10.1038/s41392-024-01839-8

33. Cao X., Zolnikova O.Yu., Maslennikov R.V., Poluektova E.A., Bueverova E.L., Reshetova M.S., et al. Metabolic profiles of the gut microbiota in patients with different stages of metabolism dysfunction-associated fatty liver disease. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2024;34(4):64–74. (In Russ.). DOI: 10.22416/1382-4376-2024-34-4-64-74

34. Kassan M., Kwon Y., Munkhsaikhan U., Sahyoun A.M., Ishrat T., Galán M., et al. Protective role of short-chain fatty acids against Ang-II-induced mitochondrial dysfunction in brain endothelial cells: A potential role of heme oxygenase 2. Antioxidants (Basel). 2023;12(1):160. DOI: 10.3390/antiox12010160

35. Virmani M.A., Cirulli M. The role of l-carnitine in mitochondria, prevention of metabolic inflexibility and disease initiation. Int J Mol Sci. 2022;23(5):2717. DOI: 10.3390/ijms23052717

36. Leonardi R., Jackowski S. Biosynthesis of pantothenic acid and coenzyme A. EcoSal Plus. 2007;2(2):10.1128/ecosalplus.3.6.3.4. DOI: 10.1128/ecosalplus.3.6.3.4

37. Li Z., Wang F., Liang B., Su Y., Sun S., Xia S., et al. Methionine metabolism in chronic liver diseases: An update on molecular mechanism and therapeutic implication. Signal Transduct Target Ther. 2020;5(1):280. DOI: 10.1038/s41392-020-00349-7

38. Beyoğlu D., Popov Y.V., Idle J.R. The metabolomic footprint of liver fibrosis. Cells. 2024;13(16):1333. DOI: 10.3390/cells13161333


Supplementary files

Review

For citations:


Reshetova M.S., Markin P.A., Appolonova S.A., Shestakova K.M., Baydalin O.A., Voloshin I.A., Yunusov I.R., Zolnikova O.Yu., Maslennikov R.V., Zharkova M.S., Ivashkin V.T. Metabolomic Profiling of Patients with Alcoholic Liver Disease and Non-Alcoholic Fatty Liver Disease Using Principal Component Analysis. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2025;35(3):54-70. https://doi.org/10.22416/1382-4376-2025-35-3-54-70

Views: 67


ISSN 1382-4376 (Print)
ISSN 2658-6673 (Online)