Metabolomic Profiling of Patients with Alcoholic Liver Disease and Non-Alcoholic Fatty Liver Disease Using Principal Component Analysis
https://doi.org/10.22416/1382-4376-2025-35-3-54-70
Abstract
Aim: to investigate the metabolomic profile of patients with alcoholic liver disease and non-alcoholic fatty liver disease.
Materials and methods. The present study included patients diagnosed with non-alcoholic fatty liver disease (NAFLD) (n = 44), patients diagnosed with alcoholic liver disease (ALD) (n = 40) and 14 healthy volunteers. The level of metabolites in the blood serum were determined via high-performance liquid chromatography and tandem mass spectrometry.
Results. In this study, a cross-sectional targeted metabolomic analysis of 96 serum metabolites was performed in patients. Statistical analysis using the principal component method identified six main factors, comprising metabolites from various metabolic pathways. Comparative analysis between patient groups and the control group revealed statistically significant differences in the metabolic activity of individual factors, collectively reflecting alterations in the metabolomic profile. Levels of acylcarnitines, uridine, metanephrine, asymmetric and total dimethylarginine were elevated in patients with NAFLD and ALD compared to the control group. Carnitine, short chain acylcarnitines, valine, leucine, lysine, and alanine were significantly higher in patients with NAFLD compared to those with ALD. In contrast, levels of tyrosine, epinephrine, and methionine were significantly increased in ALD patients compared to both NAFLD patients and healthy volunteers. Among patients with liver cirrhosis (both ALD and NAFLD), there was a noticeable trend toward altered metabolic activity of factors correlating with liver failure indicators and the FIB-4 index. As liver cirrhosis progressed, statistically significant changes in metabolite levels were observed across Child — Pugh classes, taking into account hypocoagulation, hypoalbuminemia, hyperbilirubinemia, the presence of ascites, and hepatic encephalopathy.
About the Authors
M. S. ReshetovaRussian Federation
Maria S. Reshetova — Teaching Assistant of the Department of Internal Disease Propaedeutics, Gastroenterology and Hepatology
119435, Moscow, Pogodinskaya str., 1, build. 1
P. A. Markin
Russian Federation
Pavel A. Markin — Cand. Sci. (Pharm.), Head of the Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology
119991, Moscow, Trubetskaya str., 8, build. 2
S. A. Appolonova
Russian Federation
Svetlana A. Appolonova — Cand. Sci. (Chem.), Associate Professor of the Department of Pharmacology, Head of the Centre of Biopharmaceutical Analysis and Metabolomics, Institute of Translational Medicine and Biotechnology
119991, Moscow, Trubetskaya str., 8, build. 2
K. M. Shestakova
Russian Federation
Kseniia M. Shestakova — Cand. Sci. (Pharm.), Head of the Laboratory of Bioinformatics and Pharmacological Modelling of Biopharmaceutical Analysis and Metabolomics, Institute of Translational Medicine and Biotechnology
119991, Moscow, Trubetskaya str., 8, build. 2
O. A. Baydalin
Oleg A. Baydalin — Research Assistant at the Department of Internal Disease Propaedeutics, Gastroenterology and Hepatology
119435, Moscow, Pogodinskaya str., 1, build. 1
I. A. Voloshin
Russian Federation
Ilia A. Voloshin — Research Assistant at the Department of Internal Disease Propaedeutics, Gastroenterology and Hepatology
119435, Moscow, Pogodinskaya str., 1, build. 1
I. R. Yunusov
Russian Federation
Ismail R. Yunusov — Student of the N.V. Sklifosovskiy Institute of Clinical Medicine
119435, Moscow, Bolshaya Pirogovskaya str., 2, build. 4
O. Yu. Zolnikova
Russian Federation
Oxana Yu. Zolnikova — Dr. Sci. (Med.), Professor at the Department of Internal Disease Propaedeutics, Gastroenterology and Hepatology
119435, Moscow, Pogodinskaya str., 1, build. 1
R. V. Maslennikov
Russian Federation
Roman V. Maslennikov — Cand. Sci. (Med.), Associate Professor of the Department of Internal Disease Propaedeutics, Gastroenterology and Hepatology
119435, Moscow, Pogodinskaya str., 1, build. 1
M. S. Zharkova
Russian Federation
Maria S. Zharkova — Cand. Sci. (Med.), Head of the Hepatology Department of V.Kh. Vasilenko Clinic of Internal Diseases Propedeutics, Gastroenterology and Hepatology
119435, Moscow, Pogodinskaya str., 1, build. 1
V. T. Ivashkin
Russian Federation
Vladimir T. Ivashkin— Dr. Sci. (Med.), Professor, Academician of the Russian Academy of Sciences, Head of the Department of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Director of V.Kh. Vasilenko Clinic of Internal Diseases Propedeutics, Gastroenterology and Hepatology
119435, Moscow, Pogodinskaya str., 1, build. 1
References
1. Li S., Looby N., Chandran V., Kulasingam V. Challenges in the metabolomics-based biomarker validation pipeline. Metabolites. 2024;14(4):200. DOI: 10.3390/metabo14040200
2. Liu J., Semiz S., van der Lee S.J., van der Spek A., Verhoeven A., van Klinken J.B., et al. Metabolomics based markers predict type 2 diabetes in a 14-year follow-up study. Metabolomics. 2017;13(9):104. DOI: 10.1007/s11306-017-1239-2
3. Shah S.H., Kraus W.E., Newgard C.B. Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: Form and function. Circulation. 2012;126(9):1110–20. DOI: 10.1161/CIRCULATIONAHA.111.060368
4. Shajahan-Haq A.N., Cheema M.S., Clarke R. Application of metabolomics in drug resistant breast cancer research. Metabolites. 2015;5(1):100–18. DOI: 10.3390/metabo5010100
5. Friedman S.L., Neuschwander-Tetri B.A., Rinella M., Sanyal A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24(7):908–22. DOI: 10.1038/s41591-018-0104-9
6. Wegermann K., Henao R., Diehl A.M., Murphy S.K., Abdelmalek M.F., Moylan C.A. Branched chain amino acid transaminase 1 (BCAT1) is overexpressed and hypomethylated in patients with non-alcoholic fatty liver disease who experience adverse clinical events: A pilot study. PLoS One. 2018;13(9):e0204308. DOI: 10.1371/journal.pone.0204308
7. Wang T.J., Larson M.G., Vasan R.S., Cheng S., Rhee E.P., McCabe E., et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–53. DOI: 10.1038/nm.2307
8. Sánchez-Pintos P., de Castro M.J., Roca I., Rite S., López M., Couce M.L. Similarities between acylcarnitine profiles in large for gestational age newborns and obesity. Sci Rep. 2017;7(1):16267. DOI: 10.1038/s41598-017-15809-4
9. Тajiri K., Futsukaichi Y., Kobayashi S., Yasumura S., Takahara T., Minemura M., et al. L-carnitine for the treatment of overt hepatic encephalopathy in patients with advanced liver cirrhosis. J Nutr Sci Vitaminol (Tokyo). 2018;64(5):321–8. DOI: 10.3177/jnsv.64.321
10. Cheng S., Wiklund P., Autio R., Borra R., Ojanen X., Xu L., et al. Adipose tissue dysfunction and altered systemic amino acid metabolism are associated with non-alcoholic fatty liver disease. PLoS One. 2015;10(10):e0138889. DOI: 10.1371/journal.pone.0138889
11. Kakazu E., Sano A., Morosawa T., Inoue J., Ninomiya M., Iwata T., et al. Branched chain amino acids are associated with the heterogeneity of the area of lipid droplets in hepatocytes of patients with non-alcoholic fatty liver disease. Hepatol Res. 2019;49(8):860–71. DOI: 10.1111/hepr.13346
12. Holecek M., Kandar R., Sispera L., Kovarik M. Acute hyperammonemia activates branched-chain amino acid catabolism and decreases their extracellular concentrations: Different sensitivity of red and white muscle. Amino Acids. 2011;40(2):575–84. DOI: 10.1007/s00726-010-0679-z
13. Parkhitko A.A., Jouandin P., Mohr S.E., Perrimon N. Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging Cell. 2019;18(6):e13034. DOI: 10.1111/acel.13034
14. Pascale R.M., Peitta G., Simile M.M., Feo F. Alterations of methionine metabolism as potential targets for the prevention and therapy of hepatocellular carcinoma. Medicina (Kaunas). 2019;55(6):296. DOI: 10.3390/medicina55060296
15. Li Z., Wang F., Liang B., Su Y., Sun S., Xia S., et al. Methionine metabolism in chronic liver diseases: An update on molecular mechanism and therapeutic implication. Signal Transduct Target Ther. 2020;5(1):280. DOI: 10.1038/s41392-020-00349-7
16. Choi S., Dong B., Lin C.J., Heo M.J., Kim K.H., Sun Z., et al. Methyl-sensing nuclear receptor liver receptor homolog-1 regulates mitochondrial function in mouse hepatocytes. Hepatology. 2020;71(3):1055–69. DOI: 10.1002/hep.30884
17. Kalhan S.C., Edmison J., Marczewski S., Dasarathy S., Gruca L.L., Bennett C., et al. Methionine and protein metabolism in non-alcoholic steatohepatitis: Evidence for lower rate of transmethylation of methionine. Clin Sci (Lond). 2011;121(4):179–89. DOI: 10.1042/CS20110060
18. Tessari P., Vettore M., Millioni R., Puricelli L., Orlando R. Effect of liver cirrhosis on phenylalanine and tyrosine metabolism. Curr Opin Clin Nutr Metab Care. 2010;13(1):81–6. DOI: 10.1097/MCO.0b013e32833383af
19. Marrone G., Serra A., Miele L., Biolato M., Liguori A., Grieco A., et al. Branched chain amino acids in hepatic encephalopathy and sarcopenia in liver cirrhosis: Evidence and uncertainties. World J Gastroenterol. 2023;29(19):2905–15. DOI: 10.3748/wjg.v29.i19.2905
20. Dam G., Sørensen M., Buhl M., Sandahl T.D., Møller N., Ott P., et al. Muscle metabolism and whole blood amino acid profile in patients with liver disease. Scand J Clin Lab Invest. 2015;75(8):674–80.
21. Holeček M. Branched-chain amino acids and branchedchain keto acids in hyperammonemic states: Metabolism and as supplements. Metabolites. 2020;10(8):324. DOI: 10.3390/metabo10080324
22. Gaggini M., Carli F., Rosso C., Younes R., D’Aurizio R., Bugianesi E., et al. Altered metabolic profile and adipocyte insulin resistance mark severe liver fibrosis in patients with chronic liver disease. Int J Mol Sci. 2019;20(24):6333. DOI: 10.3390/ijms20246333
23. Lelou E., Corlu A., Nesseler N., Rauch C., Mallédant Y., Seguin P., et al. The role of catecholamines in pathophysiological liver processes. Cells. 2022;11(6):1021. DOI: 10.3390/cells11061021
24. Saccà L., Vigorito C., Cicala M., Corso G., Sherwin R.S. Role of gluconeogenesis in epinephrine-stimulated hepatic glucose production in humans. Am J Physiol. 1983;245(3):E294–302. DOI: 10.1152/ajpendo.1983.245.3.E294
25. Meyer C., Stumvoll M., Welle S., Woerle H.J., Haymond M., Gerich J. Relative importance of liver, kidney, and substrates in epinephrine-induced increased gluconeogenesis in humans. Am J Physiol Endocrinol Metab. 2003;285(4):E819–26. DOI: 10.1152/ajpendo.00145.2003
26. Rasouli M., Zahraie M. Suppression of VLDL associated triacylglycerol secretion by both alpha- and beta-adrenoceptor agonists in isolated rat hepatocytes. Eur J Pharmacol. 2006;545(2–3):109–14. DOI: 10.1016/j.ejphar.2006.06.066
27. Rasouli M., Mosavi-Mehr M., Tahmouri H. Liver denervation increases the levels of serum triglyceride and cholesterol via increases in the rate of VLDL secretion. Clin Res Hepatol Gastroenterol. 2012;36(1):60–5. DOI: 10.1016/j.clinre.2011.09.012
28. Parlesak A., Reisenauer C., Biermann J., Ratge D., Bode J.C., Bode C. Reversibility of increased formation of catecholamines in patients with alcoholic liver disease. Scand J Gastroenterol. 2004;39(1):60–6. DOI: 10.1080/00365520310007738
29. Reshetova M., Markin P., Appolonova S., Yunusov I. Zolnikova O., Bueverova E., et al. Tryptophan metabolites in the progression of liver diseases. Biomolecules. 2024;14(11):1449. DOI: 10.3390/biom14111449
30. Lovato C.M., Thévenot T., Borot S., Di Martino V., Qualls C.R., Urban F.K. 3rd, et al. Decreased maximal cortisol secretion rate in patients with cirrhosis: Relation to disease severity. JHEP Rep. 2021;3(3):100277. DOI: 10.1016/j.jhepr.2021.100277
31. Ferrigno A., Di Pasqua L.G., Berardo C., Richelmi P., Vairetti M. Liver plays a central role in asymmetric dimethylarginine-mediated organ injury. World J Gastroenterol. 2015;21(17):5131–7. DOI: 10.3748/wjg.v21.i17.5131
32. Zong Y., Li H., Liao P., Chen L., Pan Y., Zheng Y., et al. Mitochondrial dysfunction: Mechanisms and advances in therapy. Signal Transduct Target Ther. 2024;9(1):124. DOI: 10.1038/s41392-024-01839-8
33. Cao X., Zolnikova O.Yu., Maslennikov R.V., Poluektova E.A., Bueverova E.L., Reshetova M.S., et al. Metabolic profiles of the gut microbiota in patients with different stages of metabolism dysfunction-associated fatty liver disease. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2024;34(4):64–74. (In Russ.). DOI: 10.22416/1382-4376-2024-34-4-64-74
34. Kassan M., Kwon Y., Munkhsaikhan U., Sahyoun A.M., Ishrat T., Galán M., et al. Protective role of short-chain fatty acids against Ang-II-induced mitochondrial dysfunction in brain endothelial cells: A potential role of heme oxygenase 2. Antioxidants (Basel). 2023;12(1):160. DOI: 10.3390/antiox12010160
35. Virmani M.A., Cirulli M. The role of l-carnitine in mitochondria, prevention of metabolic inflexibility and disease initiation. Int J Mol Sci. 2022;23(5):2717. DOI: 10.3390/ijms23052717
36. Leonardi R., Jackowski S. Biosynthesis of pantothenic acid and coenzyme A. EcoSal Plus. 2007;2(2):10.1128/ecosalplus.3.6.3.4. DOI: 10.1128/ecosalplus.3.6.3.4
37. Li Z., Wang F., Liang B., Su Y., Sun S., Xia S., et al. Methionine metabolism in chronic liver diseases: An update on molecular mechanism and therapeutic implication. Signal Transduct Target Ther. 2020;5(1):280. DOI: 10.1038/s41392-020-00349-7
38. Beyoğlu D., Popov Y.V., Idle J.R. The metabolomic footprint of liver fibrosis. Cells. 2024;13(16):1333. DOI: 10.3390/cells13161333
Supplementary files
Review
For citations:
Reshetova M.S., Markin P.A., Appolonova S.A., Shestakova K.M., Baydalin O.A., Voloshin I.A., Yunusov I.R., Zolnikova O.Yu., Maslennikov R.V., Zharkova M.S., Ivashkin V.T. Metabolomic Profiling of Patients with Alcoholic Liver Disease and Non-Alcoholic Fatty Liver Disease Using Principal Component Analysis. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2025;35(3):54-70. https://doi.org/10.22416/1382-4376-2025-35-3-54-70