Preview

Russian Journal of Gastroenterology, Hepatology, Coloproctology

Advanced search

Psychobiotic effects of probiotics and prebiotics

https://doi.org/10.22416/1382-4376-2018-28-1-4-12

Abstract

Aim of review. The review is devoted to the effects of probiotics and prebiotics on emotional, cognitive, systemic and central spheres of psychophysiological activity in animals and humans. Microbiome is a basis of the gut-brain axis. The bacterial colonization of the gut is initiated at the moment of delivery and represents incomplete copy of maternal microbiota. Intestinal microbiome is a factor of hypothalamic-pituitary-adrenal axis formation that is involved in regulation of immunomodulation, lipid metabolism, energy balance and electrophysiologic activity of enteric nervous system. Summary. Comparison of probiotic affects in animal and human experimental studies demonstrates their equivalence. Many experimental data indicative of relation of probiotic intake and patients’ mood are accumulated. The effect of probiotics on cortisol level was demonstrated. The proof of possible immunologic effects of probiotics at irritable bowel syndrome that is associated with gut-brain signal axis disorders and microbiome changes was received. Attempts to reveal intrinsic mechanisms of positive emotional shifts in humans are of a great interest. Ability of psychobiotics to influence the depth of emotions is confirmed. Conclusion. Psychobiotics are capable to provide positive impact on patients’ mood. Addition of behavioral criteria of concern, cognitive control and suppressed mood to the studies will broaden spectrum and palette of a self-assessment of study participants. At a systemic level suppression of cortisol and proinflammatory cytokines production by psychobiotics maintain the positive effect on the mood due to reduction of systemic inflammation severity.

About the Authors

V. T. Ivashkin
Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University
Russian Federation


K. V. Ivashkin
Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University
Russian Federation


References

1. Уголев А.И. Эволюция пищеварения и принципы эволюции функций: элементы современного функционализма. Л.: Наука; 1985 544 с.

2. Hooper L.V., Littman D.R., Macpherson A.J. Interactions between the microbiota and the immune system. Science 2012; 336:1268-73.

3. Kau A.L., Ahem P.P., Griffin N.W., Goodman A.L., Gordon J.I. Human nutrition, the gut microbiome and the immune system. Nature 2011; 474:327-36.

4. Le Chatelier E., Nielsen T., Qin J., Prifti E., Hildebrand F., Falony G. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500:541-6.

5. Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An obesityassociated gut microbiome with increased capacity for energy harvest. Nature 2006; 444:1027-31.

6. Bravo J.A., Julio-Pieper M., Forsythe P., Kunze W., Dinan T.G., Bienenstock J., Cryan J.F. Communication between gastrointestinal bacteria and the nervous system. Curr Opin Pharmacol 2012; 12:667-72.

7. Foster J.A., McVey Neufeld K.A. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 2013; 36:305-12.

8. Dinan T.G., Stanton C., Cryan J.F. Psychobiotics: a novel class of psychotropic. Biol Psychiatry 2013; 74:720-6.

9. Mayer E.A., Knight R., Mazmanian S.K., Cryan J.F., Tillisch K. Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci 2014; 34(46):15490-6.

10. Burnet P.W., Cowen P.J. Psychobiotics highlight the pathways to happiness. Biol Psychiatry 2013; 74:708-9.

11. Sansonetti P.J., Medzhitov R. Learning tolerance while fighting ignorance. Cell 2009; 138:416-20.

12. Gibson G.R., Scott K.P., Rastall R.A., Tuohy K.M., Hotchkiss A.T., Dubert-Ferrandon A., Gareau M.G., Murphy E.F. et al. Dietary prebiotics: current status and new definition. Food Sci Techno Bull Funct Foods 2010; 7:1-19.

13. Dowlati Y., Herrmann N., Swardfager W., Liu H., Sham L., Reim E.K., Lanctot K.L. A meta-analysis of cytokines in major depression. Biol Psychiatry 2010; 67:446-57.

14. Udina M., Castellvi P., Moreno-Espana J., Navines R., Valdes M., Forns X., Langohr K., Sola R., Vieta E., Martin-Santos R. Interferon-induced depression in chronic hepatitis C: a systematic review and meta-analysis. J Clin Psychiatry 2012; 73:1128-38.

15. McNutt M.D., Liu S., Manatunga A., Royster E.B., Raison C.L., Woolwine B.J., Demetrashvili M.F., Miller A.H., Musselman D.L. Neurobehavioral effects of interferon-α in patients with hepatitis C: symptom dimensions and responsiveness to paroxetine. Neuropsychopharmacology 2012; 37:1444-54.

16. Lu Y., Christian K., Lu B. BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem 2008;89:312-23.

17. Heldt S.A., Stanek L., Chhatwal J.P., Ressler K.J. Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol Psychiatry 2007; 12:656-70.

18. Martinowich K., Lu B. Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology 2008; 33:73-83.

19. Desbonnet L., Garrett L., Clarke G., Kiely B., Cryan J.F., Dinan T.G. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 2010; 170:1179-88.

20. Gareau M.G., Jury J., MacQueen G., Sherman P.M., Perdue M.H. Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 2007; 56:1522-8.

21. Bravo J.A., Forsythe P., Chew M.V., Escaravage E., Savignac H.M., Dinan T.G., Bienenstock J., Cryan J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U.S.A. 2011; 108:16050-5.

22. Matthews D.M., Jenks S.M. Ingestion of Mycobacterium vaccae decreases anxiety-related behavior and improves learning in mice. Behav Processes 2013; 96:27-35.

23. Desbonnet L., Garrett L., Clarke G., Bienenstock J., Dinan T.G. The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res 2008; 43:164-74.

24. Liang S., Wang T., Hu X., Luo J., Li W., Wu X., Duan Y., Jin F. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 2015; 310:561-77.

25. Janik R., Thomason L.A.M., Stanisz A.M., Forsythe P., Bienenstock J., Stanisz G.J. Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate. Neuroimage 2016; 125:988-95.

26. Alander M., Satokari R., Korpela R., Saxenlin M., Vilpponen-Salmela T., Mattila-Sandholm T., von Wright A. Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption. Appl Environ Microbiol 1999;65:351-4.

27. Savignac H.M., Corona G., Mills H., Chen L., Spancer J.P., Tzortzis G., Burnet P.W. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-d-aspartate receptor subunits and d-serine. Neurochem Int 2013; 63:756-4.

28. Vázquez E., Barranco A., Ramirez M., Gruart A., Delgado-Garcia J.M., Martinez-Lara E., Blanco S. et al. Effects of a human milk oligosaccharide, 2′-fucosyllactose, on hippocampal long-term potentiation and learning capabilities in rodents. J Nutr Biochem 2015; 26:455-65.

29. Williams S., Chen L., Savignac H.M., Tzortzis G., Anthony D.C., Burnet P.W. Neonatal prebiotic (BGOS) supplementation increases the levels of synaptophysin, GluN2A-subunits and BDNF proteins in the adult rat hippocampus. Synapse 2016; 70:121-4.

30. Oliveros E., Ramirez M., Vazquez E., Barranco A., Gruart A., Delgado-Garcia J.M., Buck R., Rueda R., Martin M.J. Oral supplementation of 2′-fucosyllactose during lactation improves memory and learning in rats. J Nutr Biochem 2016; 31:20-7.

31. Benton D., Williams C., Brown A. Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur J Clin Nutr 2007; 61:355-61.

32. Messaoudi M., Lalonde R., Violle N., Javelot H., Desor D., Nejdi A., Bisson J.F. et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 2011; 105:755-64.

33. Steenbergen L., Sellaro R., van Hemert S., Bosch J.A., Colzato L.S. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun 2015; 48:258-64.

34. Kato-Kataoka A., Nishida K., Takada M., Kawai M., Kikuchi-Hayakawa H., Suda K., Ishikawa H., Gondo Y. et al. Fermented milk containing Lactobacillus casei strain Shirota preserves the diversity of the gut microbiota and relieves abdominal dysfunction in healthy medical students exposed to academic stress. Appl Environ Microbiol 2016;82:3649-58.

35. Sashihara T., Nagata M., Mori T., Ikegami S., Gotoh M., Okubo K., Uchida M., Itoh H. Effects of Lactobacillus gasseri OLL2809 and α-lactalbumin on university-student athletes: a randomized, double-blind, placebo-controlled clinical trial. Appl Physiol Nutr Metab 2013;38:1228-35.

36. O’Mahony L., McCarthy J., Kelly P., Hurley G., Luo F., Chen K., O’Sullivan G.C., Kiely B. et al. Lactobacillus and Bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 2005; 128:541-51.

37. Mayer E.A., Tillisch K. The brain-gut axis in abdominal pain syndromes. Ann Rev Med 2011; 62:381-96.

38. Kassinen A., Krogius-Kurikka L., Makivuokko H., Rinttila T., Paulin L., Corander J., Malinen E. et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 2007; 133:24-33.

39. Britton J.C., Taylor S.F., Sudheimer K.D., Liberzon I. Facial expressions and complex IAPS pictures: common and differential networks. Neuroimage 2006; 31:906-19.

40. Schmidt K., Cowen P.J., Harmer C.J., Tzortzis G., Errington S., Burnet P.W. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology (Berl) 2015; 232:1793-801.

41. Bhagwagar Z., Hafizi S., Cowen P.J. Increased salivary cortisol after waking in depression. Psychopharmacology (Berl) 2005; 182:54-7.

42. Mannie Z.N., Harmer C.J., Cowen P.J. Increased waking salivary cortisol levels in young people at familial risk of depression. Am J Psychiatry 2007; 164:617-21.

43. Ironside M., O’Shea J., Cowen P.J., Harmer C.J. Frontal cortex stimulation reduces vigilance to threat: implications for the treatment of depression and anxiety. Biol Psychiatry 2016; 79:823-30.

44. Bercik P., Park A.J., Sinclair D., Khoshdel A., Lu J., Huang X., Deng Y., Blennerhassett P.A., Fahnestock M. et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 2011;23:1132-9.


Review

For citations:


Ivashkin V.T., Ivashkin K.V. Psychobiotic effects of probiotics and prebiotics. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2018;28(1):4-12. (In Russ.) https://doi.org/10.22416/1382-4376-2018-28-1-4-12

Views: 2135


ISSN 1382-4376 (Print)
ISSN 2658-6673 (Online)