Preview

Russian Journal of Gastroenterology, Hepatology, Coloproctology

Advanced search

Non-Alcoholic Fatty Liver Disease, Bile Acids and Intestinal Microbiota

https://doi.org/10.22416/1382-4376-2018-28-4-84-90

Abstract

Aim.  The aim of the review is to present current data on the relationship between non-alcoholic fatty liver disease (NAFLD) with the metabolic disorders of bile acids (BA) and changes in the composition of the intestinal microbiota.

Background.  NAFLD is accompanied by a change in the intestinal microbiotic composition: the proportion of taxa deconjugating BAs increases, while the proportion of taxa converting primary BAs to secondary ones decreases. The number of bacteria forming lipopolysaccharide (LPS) also increases. LPS, entering the liver with the portal vein blood, promotes the development of its inflammation and insulin resistance. The disturbance of bile acid metabolism through the effect on the FXR and TGR5 receptors also leads to insulin resistance and liver steatosis. FXR probiotics and agonists are promising drugs for the NAFLD treatment.

Conclusion.  In the course of NAFLD, a change in the composition of the intestinal microbiota is observed, which contributes to the development of inflammation in the liver and disrupts the metabolism of bile acids, leading to insulin resistance. 

About the Authors

R. V. Maslennikov
I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Healthcare of the Russian Federation
Russian Federation
Ph.D. researcher of the Department of Propaedeutics of Internal Diseases, Faculty of Physiology


Yu. V. Evsyutina
National Research Center for Preventive Medicine
Russian Federation
Cand. Sci. (Med.), Researcher, Department of Fundamental and Applied Aspects of Obesity


References

1. Younossi Z.M., Koenig A.B., Abdelatif D., Fazel Y, Henry L., Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84.

2. Rinella M.E. Nonalcoholic fatty liver disease: a systematic review. JAMA. 2015;313(22):2263–73.

3. Smallwood T., Allayee H., Bennett B.J. Choline metabolites: gene by diet interactions. Curr Opin Lipidol. 2016;27(1):33–9.

4. Al rajabi A., Castro G.S., Da silva R.P., et al. Choline supplementation protects against liver damage by normalizing cholesterol metabolism in Pemt/Ldlr knockout mice fed a high-fat diet. J Nutr. 2014;144(3):252–7.

5. Song J., Da costa K.A., Fischer L.M., et al. Polymorphism of the PEMT gene and susceptibility to nonalcoholic fatty liver disease (NAFLD). FASEB J. 2005;19(10):1266–71.

6. Collison K.S., Saleh S.M., Bakheet R.H., et al. Diabetes of the liver: the link between nonalcoholic fatty liver disease and HFCS-55. Obesity (Silver Spring). 2009;17(11):2003–13.

7. Turnbaugh P.J., Ley R.E., Hamady M., Fraserliggett C.M., Knight R., Gordon J.I. The human microbiome project. Nature. 2007;449(7164):804–10.

8. Zhu L., Baker S.S., Gill C., et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology. 2013;57(2):601–9.

9. Bajaj J.S. et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol. 2014;60:940–7.

10. Chen Y., Yang F., Lu H., et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology. 2011;54(2):562–72.

11. Bäckhed F., Ding H., Wang T., et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. 2004;101(44):15718–23.

12. Bäckhed F., Manchester J.K., Semenkovich C.F., Gordon J.I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA. 2007;104(3):979–84.

13. Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.

14. Le Roy T., Llopis M., Lepage P., et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut. 2013;62(12):1787–94.

15. Drenick E.J., Fisler J., Johnson D. Hepatic steatosis after intestinal bypass — prevention and reversal by metronidazole, irrespective of protein-calorie malnutrition. Gastroenterology. 1982;82(3):535–48.

16. Wigg A.J., Roberts-Thomson I.C., Dymock R.B., Mccarthy P.J., Grose R.H., Cummins A.G. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut. 2001;48(2):206–11.

17. Michail S., Lin M., Frey M.R., et al. Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease. FEMS Microbiol Ecol. 2015;91(2):1–9.

18. Raman M., Ahmed I., Gillevet P.M., et al. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2013;11(7):868–75.e1–3.

19. Spencer M.D., Hamp T.J., Reid R.W., Fischer L.M., Zeisel S.H., Fodor A.A. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology. 2011;140(3):976–86.

20. Boursier J., Mueller O., Barret M., et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2016;63(3):764–75.

21. Miele L., Valenza V., La torre G., et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology. 2009;49(6):1877–87.

22. Gäbele E., Dostert K., Hofmann C., et al. DSS induced colitis increases portal LPS levels and enhances hepatic inflammation and fibrogenesis in experimental NASH. J Hepatol. 2011;55(6):1391–9.

23. Cani P.D., Amar J., Iglesias M.A., et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72.

24. Rivera C.A., Adegboyega P., Van Rooijen N., Tagalicud A., Allman M., Wallace M. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol. 2007;47(4):571–9.

25. Harte A.L., Da Silva N.F., Creely S.J., et al. Elevated endotoxin levels in non-alcoholic fatty liver disease. J Inflamm (Lond). 2010;7:15.

26. Schwiertz A., Taras D., Schäfer K., et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18(1):190–5.

27. Mouzaki M., Wang A.Y., Bandsma R., et al. Bile Acids and Dysbiosis in Non-Alcoholic Fatty Liver Disease. PLoS ONE. 2016;11(5):e0151829.

28. Puri P., Daita K., Joyce A., et al. The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids. Hepatology. 2017.

29. Schaap F.G., Trauner M., Jansen P.L. Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol. 2014;11:55–67.

30. Zhang Y., Lee F.Y., Barrera G., Lee H., Vales C., Gonzalez F.J., Willson T.M., et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci USA. 2006;103:1006–11.

31. Watanabe M., Houten S.M., Wang L., Moschetta A., Mangelsdorf D.J., Heyman R.A., Moore D.D., et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 2004;113:1408–18.

32. Fuchs C.D., Traussnigg S.A., Trauner M. Nuclear Receptor Modulation for the Treatment of Nonalcoholic Fatty Liver Disease. Semin Liver Dis. 2016;36:69–86.

33. Carr R.M., Reid A.E. FXR agonists as therapeutic agents for non-alcoholic fatty liver disease. Curr Atheroscler Rep. 2015;17:500–16.

34. Jahn D., Rau M., Hermanns H.M., Geier A. Mechanisms of enterohepatic fibroblast growth factor 15/19 signaling in health and disease. Cytokine Growth Factor Rev. 2015;26:625–35.

35. Mazuy C., Helleboid A., Staels B., Lefebvre P. Nuclear bile acid signaling through the farnesoid X receptor. Cell Mol Life Sci. 2015;72:1631–50.

36. Chao F., Gong W., Zheng Y., Li Y., Huang G., Gao M., Li J., et al. Upregulation of scavenger receptor class B type I expression by activation of FXR in hepatocyte. Atherosclerosis. 2010;213:443–8.

37. Tilg H., Moschen A.R., Roden M. NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol. 2017;14(1):32–42.

38. Bergheim I., Weber S., Vos M., et al. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J Hepatol. 2008;48(6):983–92.

39. Loguercio C., De Simone T., Federico A., et al. Gut-liver axis: a new point of attack to treat chronic liver damage?. Am J Gastroenterol. 2002;97(8):2144–6.

40. Li Z., Yang S., Lin H., et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology. 2003;37(2):343–50.

41. Kirpich I.A., Marsano L.S., McClain C.J. Gut-liver axis, nutrition, and non-alcoholic fatty liver disease. Clin Biochem. 2015;48:923–30.

42. Alisi A., Bedogni G., Baviera G., Giorgio V., Porro E., Paris C., et al. Randomised clinical trial: The beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2014;39:1276–85.

43. Gao X., Zhu Y., Wen Y., Liu G., Wan C. Efficacy of probiotics in non-alcoholic fatty liver disease in adult and children: A meta-analysis of randomized controlled trials. Hepatol Res. 2016;46(12):1226–33.

44. Ma Y.Y., Li L., Yu C.H., Shen Z., Chen L.H., Li Y.M. Effects of probiotics on nonalcoholic fatty liver disease: a meta-analysis. World J Gastroenterol. 2013;19(40):6911–8.

45. Porez G., Prawitt J., Gross B., et al. Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. J Lipid Res. 2012;53:1723–37.

46. Neuschwander-Tetri B.A., Loomba R., Sanyal A.J., et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385:956–65.

47. Gege C., Kinzel O., Steeneck C., et al. Knocking on FXR’s door: the «hammerhead»-structure series of FXR agonists-amphiphilic isoxazoles with potent in vitro and in vivo activities. Curr Top Med Chem. 2014;14:2143–58.

48. McMahan R.H., Wang X.X., Cheng L.L., et al. Bile acid receptor activation modulates hepatic monocyte activity and improves nonalcoholic fatty liver disease. J Biol Chem. 2013;288:11761–70.


Review

For citations:


Maslennikov R.V., Evsyutina Yu.V. Non-Alcoholic Fatty Liver Disease, Bile Acids and Intestinal Microbiota. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2018;28(4):84-90. (In Russ.) https://doi.org/10.22416/1382-4376-2018-28-4-84-90

Views: 2019


ISSN 1382-4376 (Print)
ISSN 2658-6673 (Online)