Preview

Russian Journal of Gastroenterology, Hepatology, Coloproctology

Advanced search

Intestinal Permeability Assays: a Review

https://doi.org/10.22416/1382-4376-2021-31-1-20-30

Abstract

Aim. A literature review of intestinal permeability assessment techniques.

Key points. The intestinal barrier is a functional entity separating the intestinal lumen and internal body, and intestinal permeability is a measure of the barrier functionality. The intestinal barrier integrity and permeability assays differ by the application setting (in vivo or ex vivo), subject (human or animal), marker molecules used to assess permeability (ions, various size carbohydrates, macromolecules, antigens, bacterial products and bacteria), biomaterial for the marker concentration assays (peripheral blood, portal venous blood, urine, stool). Despite a great variety of methods for assessing intestinal permeability, their clinical application requires further studies due to a lack of standardisation, the complexity of selected techniques and occasional limited reliability of results.

Conclusion. Further investigation and improvement of intestinal permeability assays is required. The assay and result standardisation will facilitate practice in functional and organic intestinal diseases, as well as allergies, diabetes mellitus, non-alcoholic fatty liver disease and some other illnesses.

About the Authors

A. A. Iakupova
Kazan Federal University
Russian Federation

Alina A. Iakupova — Resident Physician, Chair of Fundamentals of Clinical Medicine, Kazan Federal University.

420012, Kazan, Karla Marksa str., 76.



S. R. Abdulkhakov
Kazan Federal University; Kazan State Medical University
Russian Federation

Sayar R. Abdulkhakov — Cand. Sci. (Med.), Head of the Chair of Fundamentals of Clinical Medicine, Kazan Federal University, associate professor, Department (Chair) of Outpatient Therapy and General Medical Practice, Kazan State Medical University.

420012, Kazan, Karla Marksa str., 76.



R. K. Zalyalov
Kazan Federal University, University Clinic
Russian Federation

Ramil K. Zalyalov — Physician (endoscopy), Kazan Federal University.

420043, Kazan, Chekhova str., 1A.



A. G. Safin
Kazan Federal University, University Clinic
Russian Federation

Ayrat G. Safin — Physician (endoscopy), Head of the Department of Endoscopy, Kazan Federal University.

420043, Kazan, Chekhova str., 1A.



R. A. Abdulkhakov
Kazan State Medical University
Russian Federation

Rustam A. Abdulkhakov — Dr. Sci. (Med.), Prof., Chair of Hospital Therapy, Kazan State Medical University.

420012, Kazan, Butlerova str., 49.



References

1. Salvo R.E., Alonso C.C., Pardo C.C., Casado B.M., Vicario M. The intestinal barrier function and its involvement in digestive disease. Rev Esp Enferm Dig. 2015;107(11):686— 96. DOI: 10.17235/reed.2015.3846/2015

2. Nalle S.C., Turner J.R. Intestinal barrier loss as a critical pathogenic link between inflammatory bowel disease and graft-versus-host disease. Mucosal Immunol. 2015;8(4):720-30. DOI: 10.1038/mi.2015.40

3. Cui Y., Wang Q., Chang R., Zhou X., Xu C. Intestinal Barrier Function-Non-alcoholic Fatty Liver Disease Interactions and Possible Role of Gut Microbiota. J Ag-ric Food Chem. 2019;67(10):2754-62. DOI: 10.1021/acs.jafc.9b00080

4. Camilleri M., Madsen K., Spiller R., Van Meerveld B. G., Verne G.N. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenter-ol Motil. 2012;24(6):503-12. DOI: 10.1111/j.1365-2982.2012.01921.х

5. Vancamelbeke M., Vermeire S. The intestinal barrier: a fundamental role in health and disease. Expert Rev Gastroenterol Hepatol. 2017; 11(9):821—34. DOI: 10.1080/17474124.2017.1343143

6. Borovik T.E., Makarova S.G., Yatsyk G.V., Stepanova T.N., Gribakin S.G. The role of intestinal barrier function disorders in the development of food allergy in children. Questions of Modern Pediatrics. 2013;12(2):12-9 (In Russ.).

7. Chang J., Leong R.W., Wasinger V., Ip M., Yang M., Phan T.G. Impaired intestinal permeability contributes to ongoing bowel symptoms in patients with inflammatory bowel disease and mucosal healing. Gastroenterology. 2017;153:723-31.

8. Antoni L., Nuding S., Wehkamp J., Stange E.F. Intestinal barrier in inflammatory bowel disease. World J Gastroenterol.2014;20(5):1165-79.

9. Schoultz I., Keita J.V. Cellular and Molecular Therapeutic Targets in Inflammatory Bowel Disease-Focusing on Intestinal Barrier Function. Cells. 2019;8(2):193. DOI: 10.3390/cells8020193

10. Sikora M., Chrabqszcz M., Maciejewski C., Zaremba M., Waskiel A., Olszewska M. Intestinal barrier integrity in patients with plaque psoriasis. Dermatol. 2018;45(12):1468-70. DOI: 10.1111/1346-8138.14647

11. Kunst M.A., Yakupova S.P., Zinkevich O.D., Abdrakipov R.Z., Afanas'eva M.A., Suhorukova E.V. The role of microbial infection and intestinal permeability in the pathogenesis of rheumatoid arthritis. Practical medicine. 2014;4(80):25-56 (In Russ.).

12. Linda C.Yu., Jin T.W., Shu-Chen W., Yen-Hsuan Ni. Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology. World J Gastrointest Pathophysiol. 2012;3(1):27-43. DOI: 10.4291/wjgp.v3.i1.27

13. Zakostelska Z., Kverka M., Klimesova K., Rossmann P., Mrazek J., Kopecny J., et al. Lysate of Probiotic Lactobacillus casei DN-114 001 Ameliorates Colitis by Strengthening the Gut Barrier Function and Changing the Gut Microenvironment. PLoS ONE. 2011; 6(11): e27961. DOI: 10.1371/journal.pone.0027961

14. Laval L., Martin R., Natividad J., Chain F., Miquel S., De Maredsous C.D., et al. Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice. Gut Microbes. 2015;6:1-9. DOI: 10.4161/19490976.2014.990784

15. Leffler D.A., Kelly C.P., Green P.H., Fedorak R.N., DiMarino A., Perrow W., et al. Larazotide acetate for persistent symptoms of celiac disease despite a gluten-free diet: a randomized controlled trial. Gastroenterology. 2015;148:1311-6. DOI: 10.1053/j.gastro.2015.02.008

16. McCarville J.L., Caminero A., Verdu E.F. Pharmacological approaches in celiac disease. Curr Opin Pharmacol. 2015;25:7-12. DOI: 10.1016/j.coph.2015.09.002

17. Galipeau J., Verdu E.F. The complex task of measuring intestinal permeability in basic and clinical science. Neurogas-troenterol Motil. 2016;28:957-65. DOI: 10.1111/nmo.12871

18. Stephan C.B., Giovanni B., Wim B., Theo O., Jorg-Dieter S., Matteo Serino., et al. Intestinal permeability — a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189. DOI: 10.1186/s12876-014-0189-7

19. De Santis S., Cavalcanti E., Mastronardi M., Jirillo E., Chieppa M. Nutritional keys for intestinal barriermodulation. Front Immunol. 2015;6:612.

20. Menard S., Cerf-Bensussan N., Heyman M. Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunol. 2010;3:247-59.

21. Luciana R.M., Camille K., Garabet Y. Intestinal antimicrobial peptides during homeostasis, infection, and disease. Front Immunol. 2012;3:310. DOI: 10.3389/fimmu.2012.00310

22. Assimakopoulos S.F., Triantos C., Maroulis I., Gogos C. The Role of the Gut Barrier Function in Health and Disease. Gastroenterology Res. 2018;11(4):261-3. DOI: 10.14740/gr1053w

23. Turner J.R. Intestinal mucosal barrier function in health and disease. Nature reviews. Immunology. 2009;9(11):799-809. DOI: 10.1038/nri2653

24. Podoprigora G.I., Kafarskaya L.I., Bainov N.A., Shkoporov A.N. Bacterial Translocation from Intestine: Microbiological, Immunological and Pathophysiological Aspects. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk = Annals of the Russian Academy of Medical Sciences. 2015; 70 (6): 640-50. (In Russ.) DOI: 10.15690/vramn564

25. Gassler N. Paneth cells in intestinal physiology and pathophysiology. World J Gastrointest Pathophysiol. 2017;8(4):150-60. DOI: 10.4291/wjgp.v8.i4.150

26. Bykov V.L. Paneth cells: history of discovery, structural and functional characteristics and the role in the maintenance of homeostasis in the small intestine. Morphology. 2014;145(1):67-80 (In Russ.).

27. McGuckin M.A., Linden S.K., Sutton P., Florin T.H. Mucin dynamics and enteric pathogens. Nat Rev Microbiol. 2011;9(4):265-78. DOI: 10.1038/nrmicro2538

28. Johansson M.E., Sjovall H., Hansson G.C. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol. 2013;10(6):352-61. DOI: 10.1038/nrgastro.2013.35

29. Hansson G.C. Role of mucus layers in gut infection and inflammation. Curr Opin Microbiol. 2012;15(1):57-62. DOI: 10.1016/j.mib.2011.11.002

30. Kim Y.S., Ho S.B. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep. 2010;12(5):319-30. DOI: 10.1007/ s11894-010-0131-2

31. Rindi G., Leiter A.B., Kopin A.S., Bordi C., Solcia E. The “normal” endocrine cell of the gut: changing concepts and new evidences. Ann N Y Acad Sci. 2004;1014:1-12. DOI: 10.1196/annals.1294.001

32. Spadoni I., Zagato E., Bertocchi A., Paolinelli R., Hot E., Di Sabatino A., et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science. 2015;350:830-4. DOI: 10.1126/science.aad0135

33. Hartsock A., Nelson W.J. Adherens and tight junctions: Structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta. 2008;1778:660-9.

34. Clarke L.L. A guide to Ussing chamber studies of mouse intestine. Am J. Physiol. Gastrointest. Liver Physiol. 2009;296:1151-66.

35. Grootjans J., Thuijls G., Verdam F., Derikx J.P., Lenaerts K., Buurman W.A. Noninvasive assessment of barrier integrity and function of the human gut. World J Gastrointest Surg. 2010;2:61-9.

36. Anderson A.D., Jain P.K., Fleming S., Poon P., Mitchell C.J., MacFie J. Evaluation of a triple sugar test of colonic permeability in humans. Acta Physiol. Scand. 2004;182:171-7.

37. Camilleri M., Nadeau A., Lamsam J., Nord S.L., Ryks M., Burton D., et al. Understanding measurements of intestinal permeability in healthy humans with urine lactulose and mannitol excretion. Neurogastroenterol Motil. 2010;22(1):15-26. DOI: 10.1111/j.1365-2982.2009.01361.x

38. Sequeira I.R., Lentle R.G., Kruger M.C., Hurst R.D. The effect of aspirin and smoking on urinary excretion profiles of lactulose and mannitol in young women: toward a dynamic, aspirin augmented, test of gut mucosal permeability. Neurogastroenterol Motil. 2012;24(9):401-11. DOI: 10.1111/j.1365-2982.2012.01969.x

39. Quigley E. Leaky gut — concept or clinical entity? Curr Opin. Gastroenterol. 2016;32:74-9.

40. Sequeira I.R., Lentle R.G., Kruger M.C., Hurst R.D. Differential trafficking of saccharidic probes following aspirin in clinical tests of intestinal permeability in young healthy women. Clin Exp Pharmacol Physiol. 2014;41:107-17.

41. Sequeira I.R., Lentle R.G., Kruger M.C., Hurst R.D. Standardising the lactulose mannitol test of gut permeability to minimise error and promote comparability. PLoS One. 2014;5:9(6):99256. DOI: 10.1371/journal.pone.0099256

42. Wang L., Llorente C., Hartmann P., Yang A.M., Chen P., Schnabl B. Methods to determine intestinal permeability and bacterial translocation during liver disease. J Immunol Methods. 2015;421:44-53. DOI: 10.1016/j.jim.2014.12.015

43. Rietschel E.T., Kirikae T., Schade F.U. The chemical structure of bacterial endotoxin in relation to bioactivity. Immunobiology. 1993;187:169-90. DOI: 10.1016/S0171-2985(11)80338-4

44. Marshall J.C. Lipopolysaccharide: an endotoxin or an exogenous hormone? Clin Infect Dis. 2005;41(7):470-80. DOI: 10.1086/432000

45. Gragg S.E., Loneragan G.H., Nightingale K.K. Substantial within-animal diversity of Salmonalla isolates from-lymph nodes, feces, and hides of cattle at slaughter. Appl Environ Microbiol. 2013;79(15):4744-50.

46. Rossignol D., Lynn M., Wittek A., Rose J. Elevated plasma levels of limulus amoebocyte lysate — reactive material. J Infect Dis. 2006;194:1340.

47. Benoit R., Rowe S., Watkins S.C., Boyle P., Garrett M., Alber S., et al. Pure endotoxin does not pass across the intestinalepithelium in vitro. Shock. 1998;10(1):43-8. DOI: 10.1097/00024382-199807000-00008

48. Ge Y., Ezzell R.M., Warren H.S. Localization of endotoxin in the rat intestinal epithelium. J. Infect Dis. 2000;182(3):873-981. DOI: 10.1086/315784

49. Bates D.W., Parsonnet J., Ketchum P.A., Miller E.B., Novitsky T.J., Sands K., et al. Limulus amebocyte lysate assay for detection of endotoxin in patients with sepsis syndrome. AMCC Sepsis Project Working Group. Clin Infect Dis. 1998;27(3):582-91. DOI: 10.1086/514713

50. Bergheim I., Weber S., Vos M., Kramer S., Volynets V., Kaserouni S., et al. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J Hepatol. 2008;48:983-92. DOI: 10.1016/j.jhep.2008.01.035

51. Thuy S., Ladurner R., Volynets V., Wagner S., Strahl S., Konigsrainer A., et al. Nonalcoholic fatty liver disease in humans is associated with increased plasma endotoxin and plasminogen activator inhibitor 1 concentrations and with fructose intake. J Nutr. 2008;138:1452-5. DOI: 10.1093/jn/138.8.1452

52. Strutz F., Heller G., Krasemann K., Krone B., Muller G.A. Relationship of antibodies to endotoxin core to mortality in medical patients with sepsis syndrome. Intensive Care Med. 1999;25:435-44. DOI: 10.1007/s001340050877

53. Munford R.S. Endotoxemia-menace, marker, or mistake? J Leukoc Biol. 2016;100(4):687-98. DOI: 10.1189/jlb.3RU0316-151R

54. Kitabatake H., Tanaka N., Fujimori N., Komatsu M., Okubo A., Kakegawa K., et al. Association between endotoxemia and histological features of nonalcoholic fatty liver disease. World journal of gastroenterology. 2017;23(4):712-22. DOI: 10.3748/wjg.v23.i4.712

55. Hawkesworth S., Moore S.E., Fulford A.J., Barclay G.R., Darboe A.A., Mark H., et al. Evidence for metabolic endotoxemia in obese and diabetic Gambian women. Nutrition & diabetes. 2013;3(8):83. DOI: 10.1038/nutd.2013.24

56. Bennett-Guerrero E., Barclay G.R., Weng P.L., Bodian C.A., Feierman D.E., Vela-Cantos F., et al. Endotoxinneutralizing capacity of serum from cardiac surgical patients. J Cardiothorac Vasc Anesth. 2001;15:451-4. DOI: 10.1053/jcan.2001.24980

57. Cai J., Chen H., Weng M., Jiang S., Gao J. Diagnostic and Clinical Significance of Serum Levels of D-Lactate and Diamine Oxidase in Patients with Crohn's Disease Gastroenterol Res Pract. 2019;19:8536952. DOI: 10.1155/2019/8536952

58. Grootjans J., Thuijls G., Verdam F., Derikx J.P., Len-aerts K., Buurman W.A. Noninvasive assessment of barrier integrity and function of the human gut. World J Gas-trointest Surg. 2010;2:61-9. DOI: 10.4240/wjgs.v2.i3.61

59. Ploger S., Stumpff F., Penner G.B., Schulzke J.D., Gabel G., Martens H., et al. Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann N Y Acad Sci. 2012;1258:52-9. DOI: 10.1111/j.1749-6632.2012.06553.x

60. Lewis K., Lutgendorff F., Phan V., Soderholm J.D., Sherman P.M., McKay D.M. Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate. Inflamm Bowel Dis. 2010;16:1138-48. DOI: 10.1002/ibd.21177

61. Wang H.B., Wang P.Y., Wang X., Wan Y.L., Liu Y.C. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig Dis Sci. 2012;57:3126-35. DOI: 10.1007/s10620-012-2259-4

62. Johansson M.E., Gustafsson J.K., Holmen-Larsson J., Jabbar K.S., Xia L., Xu H. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut. 2014;63(2):281-91. DOI: 10.1136/gutjnl-2012-303207

63. Fukunishi S., Sujishi T., Takeshita A. Lipopolysaccharides accelerate hepatic steatosis in the development of nonalcoholic fatty liver disease in Zucker rats. J Clin Biochem Nutr. 2014;54(1):39-44. DOI: 10.3164/jcbn.13-49

64. Barzal J.A., Szczylik C., Rzepecki P., Jaworska M., Anuszewska E. Plasma citrulline level as a biomarker for cancer therapyinduced small bowel mucosal damage. Acta Biochim. 2014;61:615-31.

65. Crenn P., Coudray-Lucas C., Thuillier F., Cynober L., Messing B. Postabsorptive plasma citrulline concentration is a marker of absorptive enterocyte mass and intestinal failure in humans. Gastroenterology. 2000;119:1496-505. DOI: 10.1053/gast.2000.20227

66. Blijlevens N.M., Lutgens L.C., Schattenberg A.V., Donnelly J.P. Citrulline: a potentially simple quantitative marker of intestinal epithelial damage following myeloablative therapy. Bone Marrow Transplant. 2004;34:193-6. DOI: 10.1038/sj.bmt.1704563

67. Derikx J.P., Blijlevens N.M., Donnelly J.P., Fujii H., Kanda T., van Bijnen A.A. Loss of enterocyte mass is accompanied by diminished turnover of enterocytes after myeloablative therapy in haematopoietic stem-cell transplant recipients. Ann Oncol. 2009;20:337-42. DOI: 10.1093/annonc/mdn579

68. Lutgens L.C., Deutz N., Granzier-Peeters M., Beets-Tan R., DeRuysscher D., Gueulette J. Plasma citrulline concentration: a surrogate end point for radiation-induced mucosal atrophy of the small bowel. A feasibility study in 23 patients. Int J Radiat Oncol Biol Phys. 2004;60:275-85. DOI: 10.1016/j.ijrobp.2004.02.052

69. Lutgens L.C., Blijlevens N.M., Deutz N.E., Donnelly J.P., Lambin P. Monitoring myeloablative therapy-induced small bowel toxicity by serum citrulline concentration: a comparison with sugar permeability tests. Cancer. 2005;103:191-9. DOI: 10.1002/cncr.20733

70. Pelsers M.M., Namiot Z., Kisielewski W., Namiot A., Januszkiewicz M., Hermens W.T. Intestinaltype and liver-type fatty acid-binding protein in the intestine. Tissue distribution and clinical utility. Clin Biochem. 2003;36:529-35. DOI: 10.1016/s0009-9120(03)00096-1

71. Funaoka H., Kanda T., Fujii H. Intestinal fatty acidbinding protein (I-FABP) as a new biomarker for intestinal diseases. Rinsho Byori. 2010;58(2):162-8.

72. Reisinger K.W., Derikx J.P., Thuijls G., van der Zee D.C., Brouwers H.A., van Bijnen A.A. Noninvasive measurement of intestinal epithelial damage at time of refeeding can predict clinical outcome after necrotizing enterocolitis. Pediatr Res. 2013;73:209-13. DOI: 10.1038/pr.2012.160

73. Monbaliu D., de Vries B., Crabbe T., van Heurn E., Verwaest C., Roskams T., Fevery J. Liver fatty acidbinding protein: an earlyand sensitive plasma marker of hepatocellular damage and a reliable predictor of graft viability after liver transplantation from non-heartbeating donors. Transplant Proc. 2005;37:413-6. DOI: 10.1016/j.transproceed.2004.12.103

74. Vreugdenhil A.C., Wolters V.M., Adriaanse M.P., Van den Neucker A.M., van Bijnen A.A., et al. Additional value of serum I-FABP levels for evaluating celiac disease activity in children. Scand J Gastroenterol. 2011;46:1435-41. DOI: 10.3109/00365521.2011.627447

75. Adriaanse M.P., Tack G.J., Passos V.L., Damoiseaux J.G., Schreurs M.W., van Wijck K. Serum I-FABP as marker for enterocyte damage in coeliac disease and its relation to villous atrophy and circulating autoantibodies. Aliment Pharmacol. Ther. 2013;37:482-90. DOI: 10.1111/apt.12194

76. Delaney C.P., O'Neill S., Manning F., Fitzpatrick J.M., Gorey T.F. Plasma concentrations of glutathione S-transferase isoenzyme are raised in patients with intestinal ischaemia. Br J Surg. 1999;86:1349-53. DOI: 10.1046/j.1365-2168.1999.01245.x

77. Gearhart S.L., Delaney C.P., Senagore A.J., Banbury M.K., Remzi F.H., Kiran R.P. Prospective assessment of the predictive value of alphaglutathione S-transferase for intestinal ischemia. Am Surg. 2003;69:324-9.

78. Markov A.G., Veshnyakova A., Fromm M., Amasheh M., Amasheh S. Segmental expression of claudin proteins correlates with tight junction barrier properties in rat intestine. J Comp Physiol B. 2010;180(4):591-8. DOI: 10.1007/s00360-009-0440-7

79. Gunzel D., Yu A.S. Claudins and the modulation of tight junction permeability. Physiol Rev. 2013;93(2):525-69. DOI: 10.1152/physrev.00019.2012

80. Furuse M., Fujita K., Hiiragi T., Fujimoto K., Tsukita S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol. 1998;141(7):1539-50. DOI: 10.1083/jcb.141.7.1539

81. Furuse M., Hata M., Furuse K. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol. 2002;156(6):1099-111. DOI: 10.1083/jcb.200110122

82. Ivanov A.I., Nusrat A., Parkos C.A. The epithelium in inflammatory bowel disease: potential role of endocytosis of junctional proteins in barrier disruption. Novartis Found Symp. 2004;263:115-218.

83. Kucharzik T., Walsh S.V., Chen J., Parkos C.A., Nusrat A. Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. Am J Pathol. 2001;159(6):2001-9. DOI: 10.1016/S0002-9440(10)63051-9

84. Bertiaux-Vandaёle N., Youmba S.B., Belmonte L., Lecleire S., Antonietti M., Gourcerol G. The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype. Am J Gastroenterol. 2011;106(12):2165-73. DOI: 10.1038/ajg.2011.257

85. Prasad S., Mingrino R., Kaukinen K. Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab Invest. 2005;85(9):1139-62. DOI: 10.1038/labinvest.3700316

86. Zeissig S., Burgel N., Gunzel D. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut. 2007;56(1):61-72. DOI: 10.1136/gut.2006.094375

87. Amasheh S., Dullat S., Fromm M., Schulzke J.D., Buhr H.J., Kroesen A.J. Inflamed pouch mucosa possesses altered tight junctions indicating recurrence of inflammatory bowel disease. Int J Colorectal Dis. 2009;24(10):1149-56. DOI: 10.1007/s00384-009-0737-8

88. Thuijls G., Derikx J.P., de Haan J.J. Urine-based detection of intestinal tight junction loss. J Clin Gastroenterol. 2010;44(1):14-9. DOI: 10.1097/MCG.0b013e31819f5652

89. Fagerhol M.K. Calprotectin, a faecal marker of organic gastrointestinal abnormality. Lancet. 2000;356:1783-4. DOI: 10.1016/S0140-6736(00)03224-4

90. Lundberg J.O., Hellstrom P.M., Fagerhol M.K., Weitz-berg E., Roseth A.G. Technology insight: calprotectin, lactoferrin and nitric oxide as novel markers of inflammatory bowel disease. Nat Clin Pract. Gastroenterol. Hepatol. 2005;2:96-102. DOI: 10.1038/ncpgasthep0094

91. Damms A., Bischoff S.C. Validation and clinical significance of a new calprotectin rapid test for the diagnosis of gastrointestinal diseases. Int J Colorectal Dis. 2008;23:985-92. DOI: 10.1007/s00384-008-0506-0

92. Lazebnik L.B., Gusejn-zade M.G., Efremov L.I., Sagynbaeva V.E., Knyazev O.V. Fecal calprotectin as a biomarker of the effectiveness of various medical interventions in patients with inflammatory bowel diseases. EiKG. 2013;8:11-7 (In Russ.).

93. Lebreton C., Menard S., Abed J., Moura I.C., Coppo R., Dugave C. Interactions among secretory immunoglobulin A, CD71, and transglutaminase-2 affect permeability of intestinal epithelial cells to gliadin peptides. Gastroenterology. 2012;143:698-707. DOI: 10.1053/j.gastro.2012.05.051

94. Wehkamp J., Koslowski M., Wang G., Stange E.F. Barrier dysfunction due to distinct defensin deficiencies in small intestinal and colonic Crohn's disease. Mucosal Immunol. 2008;1:67-74. DOI: 10.1038/mi.2008.48

95. Tripathi A., Lammers K.M, Goldblum S. Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc Natl Acad Sci USA. 2009;106:16799-804. DOI: 10.1073/pnas.0906773106

96. Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev. 2011;91(1):151-75. DOI: 10.1152/physrev.00003.2008

97. Lammers K.M., Lu R., Brownley J. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology. 2008;135:194-204. DOI: 10.1053/j.gastro.2008.03.023

98. Aasbrenn M., Lydersen S., Farup P.G. Changes in serum zonulin in individuals with morbid obesity after weightloss interventions: a prospective cohort study. BMC En-docr Disord. 2020;:20(1):108. DOI: 10.1186/s12902-020-00594-5

99. Martinez E.E., Zurakowski D., Pereira L., Freire R., Emans J.B., Nurko S., et al. Interleukin-10 and Zonu-lin Are Associated With Postoperative Delayed Gastric Emptying in Critically Ill Surgical Pediatric Patients: A Prospective Pilot Study. JPEN J Parenter Enteral Nutr. 2020;44(8):1407-16. DOI: 10.1002/jpen.1874

100. Edelblum K.L., Turner J.R. The tight junction in inflammatory disease: Communication breakdown. Curr Opin Pharmacol. 2009;9:715-20. DOI: 10.1016/j.coph.2009.06.022

101. Fasano A., Shea-Donohue T. Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat Clin Pract. Gastroenterol Hepatol. 2005;2:416-22. DOI: 10.1038/ncpgasthep0259

102. Barbaro M.R., Cremon C., Caio G., Bellacosa L., De Giorgio R., Volta U., et al. The role of zonulin in nonceliac gluten sensitivity and irritable bowel syndrome. United Euro Gastroenterol J. 2015;3:A87

103. Arrieta M.C., Madsen K., Doyle J., Meddings J. Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse. Gut. 2009;58(1):41-8. DOI: 10.1136/gut.2008.150888

104. Malíčková K., Francová I., Lukáš M., Kolář M., Králíková E., Bortlík M., et al. Fecal zonulin is elevated in Crohn's disease and in cigarette smokers. Pract Lab Med. 2017:23;39-44. DOI: 10.1016/j.plabm.2017.09.001bm.2017.09.001

105. Singh P., Silvester J., Chen X. Serum zonulin is elevated in IBS and correlates with stool frequency in IBS-D. United European Gastroenterol J. 2019;7(5):709-15. DOI: 10.1177/2050640619826419

106. Sapone A., de Magistris L., Pietzak M., Clemente M.G., Tripathi A., Cucca F., et al. Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes. 2006;55:1443-1449. DOI: 10.2337/db05-1593

107. Watts T., Berti I., Sapone A., Gerarduzzi T., Not T., Zielke R., et al. Role of the intestinal tight junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic-prone rats. Proc Natl Acad Sci. 2005;102:2916-21. DOI: 10.1073/pnas.0500178102

108. Ajamian M., Steer D., Rosella G., Gibson P.R. Serum zonulin as a marker of intestinal mucosal barrier function: May not be what it seems. PLoS One. 2019;14(1):0210728. DOI: 10.1371/journal.pone.0210728

109. Ortiz-Masia D., Hernandez C., Quintana E., Velazquez M., Cebrian S., Riano A., et al. iNOS-derived nitric oxide mediates the increase in TFF2 expression associated with gastric damage: role of HIF-1. FASEB J. 2010;24(1):136-45. DOI: 10.1096/fj.09-137489

110. Xue L., Aihara E., Wang T.C., Montrose M.H. Trefoil factor 2 requires Na/H exchanger 2 activity to enhance mouse gastric epithelial repair. J Biol Chem. 2011;286(44):38375-82. DOI: 10.1074/jbc.M111.268219

111. Fitzgerald A.J., Pu M., Marchbank T., Westley B.R., May F.E., Boyle J., et al. Synergistic effects of systemic trefoil factor family 1 (TFF1) peptide and epidermal growth factor in a rat model of colitis. Peptides. 2004;25:793-801. DOI: 10.1016/j.peptides.2003.12.022

112. Emami S., Le Floch M., Bruyneel E., Thim L., May F., Westley B., et al. Induction of scattering and cellular invasion by trefoil peptides in src- and RhoA-transformed kidney and colonic epithelial. FASEB J. 2001;15:351-61. DOI: 10.1096/fj.00-0355com

113. Rodrigues S., Nguyen Q.D., Faivre S., Bruyneel E., Thim L., Westley B., et al. Activation of cellular invasion by trefoil peptides and src is mediated by cyclooxygenase- and thromboxane A2 receptor-dependent signaling pathways. FASEB J. 2001;15:1517-28.

114. Hensel K.O., Boland V., Postberg J., Zilbauer M., Heuschkel R., Vogel S., et al. Differential expression of mucosal trefoil factors and mucins in pediatric inflammatory bowel diseases. Sci Rep. 2014;4:7343. DOI: 10.1038/srep07343

115. Srivastava S., Kedia S., Kumar S., Pratap Mouli V., Dhingra R., Sachdev V., et al. Serum trefoil factor 3 is a biomarker for mucosal healing in ulcerative colitis patients with minimal disease activity. J Crohns Colitis. 2015;9(7): 575-9. DOI: 10.1093/ecco-jcc/jjv075

116. Shestopalov A.V., Trofimenko O.V., Shestopalova M.A. The level of trefoil peptides (TFF-1 and TFF-2) in children with chronic gastroduodenitis. Fundamental'nye issledovaniya. 2012;10(2):363-6 (In Russ.).

117. Aihara E., Engevik K.A., Montrose M.H. Trefoil factor peptides and gastrointestinal function. Ann Rev Phys. 2017;79:357-80. DOI: 10.1146/annurev-physi-ol-021115-105447

118. Busch M., Dunker N. Trefoil factor family peptides — friends or foes? Biomol. Concepts. 2015;6(5):343-59. DOI: 10.1515/bmc-2015-0020

119. Feng G., Zhang Y., Yuan H., Bai R., Zheng J., Zhang J., et al. DNA methylation of tretoil factor 1 (TFF1) is associated with the tumorogenesis of gastric carcinoma. Mol Med Rep. 2014;9(1):109-17. DOI: 10.3892/mmr.2013.1772

120. Kurbatova A., Poluektova E., Demura T., Kuchumova S., Konkov M., Gorev M., Sheptulin A., Kogan E., Shifrin O. Ivashkin V. Cytokines and tight junction proteins expression changes in patients with irritable bowel syndrome. Gastroenterology. 2012;142(5):807.


Supplementary files

Review

For citations:


Iakupova A.A., Abdulkhakov S.R., Zalyalov R.K., Safin A.G., Abdulkhakov R.A. Intestinal Permeability Assays: a Review. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2021;31(1):20-30. (In Russ.) https://doi.org/10.22416/1382-4376-2021-31-1-20-30

Views: 2886


ISSN 1382-4376 (Print)
ISSN 2658-6673 (Online)