Preview

Russian Journal of Gastroenterology, Hepatology, Coloproctology

Advanced search

The Role of the Microbiome and Intestinal Mucosal Barrier in the Development and Progression of Non-Alcoholic Fatty Liver Disease

https://doi.org/10.22416/1382-4376-2020-30-5-42-48

Abstract

Aim. To review available data on the role of the microbiome and intestinal mucosal barrier in the development and progression of non-alcoholic fatty liver disease (NAFLD).

Key points. The role of the human microbiome in the development and progression of NAFLD is associated with its effects on the risk factors (obesity, insulin resistance, type 2 diabetes), permeability of the intestinal barrier and absorption of such substances as short-chain fatty acids, bile acids, choline and endogenous ethanol. Liver fibrosis constitutes the leading factor determining the prognosis of patients in NAFLD, including cases associated with cardiovascular complications. Changes in the microbiome composition were demonstrated for various degrees of fibrosis in NAFLD.

Conclusion. The results of modern studies confirm the formation of a new concept in the pathophysiology of NAFLD, which encourages the development of new therapeutic strategies.

About the Authors

T. S. Krolevets
Omsk State Medical University
Russian Federation

Tatyana S. Krolevets - Cand. Sci. (Med.), Research Assistant, Departmental Head, Department of Therapy and Occupational (Professional) Diseases

644099, Omsk, Lenina str., 12



M. A. Livzan
Omsk State Medical University
Russian Federation

Maria A. Livzan - Dr. Sci. (Med.), Prof., Departmental Head, Department of Therapy and Occupational  (Professional) Diseases

644099, Omsk, Lenina str., 12



S. I. Mozgovoy
Omsk State Medical University
Russian Federation

Sergei I. Mozgovoi - Dr. Sci. (Med.), Prof., Department of Pathological Anatomy

644099, Omsk, Lenina str., 12



References

1. Turnbaugh P.J., Ley R.E., Hamady M., Fraser-Liggett C.M., Knight R., Gordon J.I. The human microbiome project. Nature. 2007;449:804–10. DOI: 10.1038/nature06244

2. Hooper L.V., Gordon J.I. Commensal host-bacterial relationships in the gut. Science. 2001;292:1115–8. DOI: 10.1126/science.1058709

3. Bäckhed F., Ley R.E., Sonnenburg J.L., Peterson D.A., Gordon J.I. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–20. DOI: 10.1126/science. 1104816

4. Eckburg P.B., Bik E.M., Bernstein C.N., Purdom E., Dethlefsen L., Sargent M., et al. Diversity of the human 10.1126/science.1110591

5. Ley R.E., Hamady M., Lozupone C., Turnbaugh P.J., Ramey R.R., Bircher J.S., et al. Evolution of mammals and their gut microbes. Science. 2008;320:1647–51. DOI: 10.1126/science.1155725

6. Arumugam M., Raes J., Pelletier E., LePaslier D., Yamada T., Mende D.R., et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–80. DOI: 10.1038/nature09944

7. Rinninella E., Raoul P., Cintoni M., Franceschi F., Miggiano G.A.D., Gasbarrini A., Mele M.C. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases Microorganisms. 2019;7(1):pii:E14. DOI: 10.3390/microorganisms7010014

8. Ivashkin V.T., Ivashkin K.V. Psychobiotic effects of probiotics and prebiotics. Rus J Gastroenterol Hepatol Coloproctol. 2018;28(1):4–12 (In Russ.). DOI: 10.22416/1382-4376-2018-28-1-4-12

9. Akhmedov V.A., Gaus O.V. Role of intestinal microbiota in the formation of non-alcoholic fatty liver disease. Therapeutic archive. 2019;91(2):143–8 (In Russ.). DOI: 10.26442/00403660.2019.02.000051

10. Jayakumar S., Loomba R. Review article: emerging role of the gut microbiome in the progression of nonalcoholic fatty liver disease and potential therapeutic implications. Aliment Pharmacol Ther. 2019;50:144–58. DOI: 10.1111/apt.15314

11. Livzan M.A., Gaus O.V., Nikolaev N.A., Krolevetz T.S. NAFLD: comorbidity and associated diseases. Experimental and Clinical Gastroenterology. 2019;1(10):57–65 (In Russ.). DOI: 10.31146/1682-8658-ecg-170-10-57-65

12. Dulai P.S., Singh S., Patel J., Soni M., Prokop L.J., Younossi Z., et al. Increased risk of mortality by fibrosis stage in non-alcoholic fatty liver disease: Systematic Review and Meta-analysis. Hepatology. 2017;65(5):1557–65.DOI: 10.1002/hep.29085

13. Magne F., Gotteland M., Gauthier L., Zazueta A., Pesoa S., Navarrete P., Balamurugan R. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients. 2020;12(5):1474. DOI: 10.3390/nu12051474. PMID: 32438689. PMCID: PMC7285218

14. Rizzatti G., Lopetuso L.R., Gibiino G., Binda C., Gasbarrini A. Proteobacteria: A common factor in human diseases. Biomed Res Int. 2017;ID9351507. DOI: 10.1155/2017/9351507

15. Bäckhed F., Ding H., Wang T., Hooper L.V., Koh G.Y., Nagy A., et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. 2004;101:15718–23. DOI:10.1073/pnas.0407076101

16. Bäckhed F., Manchester J.K., Semenkovich C.F., Gordon J.I. Mechanisms underlying the resistance to diet-induced obesity ingerm-free mice. Proc Natl Acad Sci USA. 2007;104:979–84. DOI: 10.1073/pnas.0605374104

17. Khan M.J., Gerasimidis K., Edwards C.A., Shaikh M.G. Role of gut microbiota in the aetiology of obesity: proposed mechanisms and review of the literature. J Obes. 2016;2016:7353642. DOI: 10.1155/2016/7353642

18. Larsen N., Vogensen F.K., van den Berg F.W., Nielsen D.S., Andreasen A.S., Pedersen B.K., et al. Gut microbiota inhuman adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5:e9085. DOI: 10.1371/journal.pone.0009085

19. Qin J., Li Y., Cai Z., Li S., Zhu J., Zhang F., et al. A metagenome wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60. DOI: 10.1038/nature11450

20. Lazar V., Ditu L-M., Pircalabioru G.G., Picu A., Petcu L., Cucu N., Chifiriuc M.C. Gut Microbiota, Host Organism, and Diet Trialogue in Diabetes and Obesity. Front Nutr. 2019;6:21. DOI: 10.3389/fnut.2019.00021

21. Caricilli A., Saad M. The role of gut microbiota on insulin resistance. Nutrients. 2013;5(3):829–51. DOI: 10.3390/nu5030829

22. König J., Wells J., Cani P.D., García-Ródenas C.L., MacDonald T., Mercenier A., et al. Human intestinal barrier function in health and disease. Clin Transl Gastroenterol.2016;7:e196. DOI: 10.1038/ctg.2016.54

23. Daïen C.I., Pinget G.V., Tan J.K., Macia L. Detrimental impact of microbiota accessible carbohydrate-deprived diet on gut and immune homeostasis: an overview. Front Immunol. 2017;8:548. DOI: 10.3389/fimmu.2017.00548

24. Tyurenkov I.N., Kurkin D.V., Volotova E.V., Bakulin D.A. The Role of Intestinal Microflora, Food Composition, GPR41- and GPR43-Receptors for Short Chain Fatty Acids in Energy Metabolism of Vertebrates. Advances in Physiological Sciences. 2017;48(2):100–12 (In Russ.).

25. Al-Obaide M.A.I., Singh R., Datta P., Rewers-Felkins K.A., Salguero M.V., Al-Obaidi I., et al. Gut microbiota-dependent trimethylamine-N-oxide and serum biomarkers in patients with T2DM and advanced CKD. J Clin Med. 2017;6(9):E86. DOI: 10.3390/jcm6090086

26. Craig S.A. Betaine in human nutrition. Am J Clin Nutr. 2004;80:539–49. DOI: 10.1093/ajcn/80.3.539

27. Yevsyutina Yu.V., Ivashkin V.T. Metabolism of bile acids, liver diseases and microbiome. Rus J Gastroenterol Hepatol Coloproctol. 2018;28(2):4–10 (In Russ.). DOI: 10.22416/1382-4376-2018-28-2-4-10

28. Arab J.P., Karpen S.J., Dawson P.A., Arrese M., Trauner M. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology. 2017;65:350–62. DOI: 10.1002/hep.28709

29. Yoshimoto S., Loo T.M., Atarashi K., Kanda H., Sato S., Oyadomari S., et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499:97–101. DOI: 10.1038/nature12347

30. Aranha M.M., Cortez-Pinto H., Costa A. Bile acid levels are increased in the liver of patients with steatohepatitis. Eur J Gastroenterol Hepatol. 2008;20:519–25. DOI: 10.1097/MEG.0b013e3282f4710a

31. Sonnenburg J.L., Bäckhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016;535:56–64. DOI: 10.1038/nature18846

32. Bischoff S.C., Barbara G., Buurman W., Ockhuizen T., Schulzke J-D., Serino M., et al. Intestinal permeability — a new target for disease prevention and therapy. BMC Gastroenterology 2014;14:189. http://www.biomedcentral.com/1471-230X/14/189

33. Cummings J.H., Antoine J-M., Azpiroz F., Bourdet-Sicard R., Brandtzaeg P., Calder P., et al. PASSCLAIMgut health and immunity. Eur J Nutr. 2004;43:ii118–73. DOI: 10.1007/s00394-004-1205-4

34. Groschwitz K.R., Hogan S.P. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol. 2009;124(1):3–20. DOI: 10.1016/j.jaci.2009.05.038

35. Wada M., Tamura A., Takahashi N., Tsukita S. Loss of claudins 2 and 15 from mice causes defects in paracellular Na + flow and nutrient transport in gut and leads to death from malnutrition. Gastroenterology. 2013;144:369–80. DOI: 10.1053/j.gastro.2012.10.035

36. Tsukita S., Furuse M., Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol. 2001;2:285–93.DOI: 10.1038/35067088

37. Oshima T., Hiroto Miwa H. Gastro intestinal mucosal barrier function and diseases. J Gastroenterol. 2016;51(8):768–78. DOI: 10.1007/s00535-016-1207-z

38. Zeissig S., Bürgel N., Günzel D., Richter J., Mankertz J., Wahnschaffe U., et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction inactive Crohn’s disease. Gut. 2007;56(1):61–72. DOI: 10.1136/gut.2006.094375

39. Ahmad R., Rah B., Bastola D., Dhawan P., Singh A.B. Obesity-induces Organ and Tissue Specific Tight Junction Restructuring and Barrier Deregulation by Claudin Switching. Sci Rep. 2017;7(1):5125. DOI: 10.1038/s41598-017-04989-8

40. Tawiah A., Cornick S., Moreau F., Gorman H., Kumar M., Tiwari S., Chadee K. High MUC2 Mucin Expression and Misfolding Induce Cellular Stress, Reactive Oxygen Production, and Apoptosis in Goblet Cells. Am J Pathol. 2018;188:1354–73. DOI: 10.1016/j.ajpath.2018.02.007

41. Heazlewood C.K., Cook M.C., Eri R., Price G.R., Tauro S.B., Taupin D., et al. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med 2008;5(3):e54. DOI: 10.1371/journal.pmed.0050054

42. Hartmann P., Chen P., Wang H.J., Wang L., Mc-Cole D.F., Brandl K., et al. Deficiency of intestinal mucin- 2 ameliorates experimental alcoholic liver disease in mice. Hepatology. 2013;58(1):108–19. DOI: 10.1002/hep.26321

43. Spadoni I., Fornasa G., Rescigno M. Organ-specific protection mediated by cooperation between vascular and epithelial barriers. Nat Rev Immunol. 2017;17:761–73. DOI: 10.1038/nri.2017.100

44. Spadoni I., Pietrelli A., Pesole G., Rescigno M. Gene expression profile of endothelial cells during perturbation of the gut vascular barrier. Gut Microbes. 2016;7:540–8. DOI: 10.1080/19490976.2016.1239681

45. Spadoni I., Zagato E., Bertocchi A., Paolinelli R., Hot E., Di Sabatino A., et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science. 2015;350(6262):830–4. DOI: 10.1126/science.aad0135

46. Stols-Gonçalves D., Tristão L.S., Henneman P., Nieuwdorp M. Epigenetic Markers and Microbiota/Metabolite- Induced Epigenetic Modifications in the Pathogenesis of Obesity, Metabolic Syndrome, Type 2 Diabetes, and Non-alcoholic Fatty Liver Disease. Curr Diab Rep. 2019;19(6):31. DOI: 10.1007/s11892-019-1151-4

47. Chu H., Williams B., Schnabl B. Gut microbiota, fatty liver disease, and hepatocellular carcinoma. Liver Res. 2018;2(1):43–51. DOI: 10.1016/j.livres.2017.11.005

48. Graziani C., Talocco C., De Sire R., Petito V., Lopetuso L.R., Gervasoni J., et al. Intestinal permeability in physiological and pathological conditions: major determinants and assessment modalities. Eur Rev Med Pharmac Sci. 2019;23(2):795–810. DOI: 10.26355/eurrev_201901_16894

49. Zhou D., Fan J.G. Microbial metabolites in non-alcoholic fatty liver disease. World J Gastroenterol. 2019;25(17):2019–28. DOI: 10.3748/wjg.v25.i17.2019

50. Aragonès G., González-García S., Aguilar C., Richart C., Auguet T. Gut Microbiota-Derived Mediators as Potential Markers in Nonalcoholic Fatty Liver Disease. Biomed Res Int. 2019;2019:8507583. Published 2019 Jan 2. DOI: 10.1155/2019/8507583

51. Le Roy T., Llopis M., Lepage P., Bruneau A., Rabot S., Bevilacqua C., et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut. 2013;62:1787–94. DOI: 10.1136/gutjnl-2012-303816

52. Mouzaki M., Comelli E.M., Arendt B.M. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology. 2013;58:120–7.

53. Boursier J., Mueller O., Barret M., Machado M., Fizanne L., Araujo-Perez F., et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2016;63(3):764–75. DOI: 10.1002/hep.28356

54. Loomba R., Seguritan V., Li W. Long T., Klitgord N., Bhatt A., et al. Gut microbiome based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 2017;25(5):1054–62.e1e5. DOI: 10.1016/j.cmet.2017.04.001

55. Rahman K., Desai C., Iyer S.S., Thorn N.E., Kumar P., Liu Y., et al. Loss of Junctional Adhesion Molecule A Promotes Severe Steatohepatitis in Mice on a Diet High in Saturated Fat, Fructose, and Cholesterol. Gastroenterology. 2016;151(4):733–746.e12. DOI: 10.1053/j.gastro.2016.06.022


Review

For citations:


Krolevets T.S., Livzan M.A., Mozgovoy S.I. The Role of the Microbiome and Intestinal Mucosal Barrier in the Development and Progression of Non-Alcoholic Fatty Liver Disease. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2020;30(5):42-48. (In Russ.) https://doi.org/10.22416/1382-4376-2020-30-5-42-48

Views: 966


ISSN 1382-4376 (Print)
ISSN 2658-6673 (Online)