Preview

Российский журнал гастроэнтерологии, гепатологии, колопроктологии

Расширенный поиск

Прямые и косвенные методы изучения микробиоты человека

https://doi.org/10.22416/1382-4376-2022-32-2-19-34

Аннотация

Цель публикации: рассмотреть основные методы исследования микробиоты желудочно-кишечного тракта.

Основные положения. В настоящее время молекулярно-генетические методы используются преимущественно для фундаментальных исследований и не имеют единого «протокола» анализа данных, что затрудняет их внедрение в клиническую практику. Исследование короткоцепочечных жирных кислот (КЦЖК) в плазме крови может служить косвенным маркером микробного состава толстой кишки, однако на сегодня нельзя с уверенностью связать количество и соотношение определяемых КЦЖК с определенной нозологической формой; изучение уровня ТМАО в плазме крови и моче также может отражать наличие в составе кишечной микробиоты особых кластеров бактерий, несущих гены Cut, CntA/CntB и YeaW/YeaX. Однако необходимы дальнейшие исследования по выявлению корреляционных связей между определенными заболеваниями, микробным составом ЖКТ, рационом и уровнем ТМАО. Газовые биомаркеры (водород, метан и сероводород) гораздо лучше изучены по сравнению с другими типами биомаркеров функции и состава микробиоты. Преимуществом газовых биомаркеров является возможность их неинвазивного, многократного измерения, что позволяет получать информацию о соотношении гидрогенных и гидрогенотрофных микроорганизмов.

Выводы. Объединение информации, полученной при исследованиях кишечной микробиоты на уровнях генома, транскриптома и метаболома, позволит произвести более глубокий анализ состава и функционирования микробиоты человека. Такой подход имеет несомненный потенциал для понимания патогенеза различных заболеваний и открывает возможности для разработки новых стратегий профилактики и лечения. 

Об авторах

В. Т. Ивашкин
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» (Сеченовский университет) Министерства здравоохранения Российской Федерации

Ивашкин Владимир Трофимович — доктор медицинских наук, профессор, академик РАН, заведующий кафедрой пропедевтики внутренних болезней, гастроэнтерологии и гепатологии 

119435, г. Москва, ул. Погодинская, д. 1, стр. 1



О. С. Медведев
ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»; ФГБУ «Национальный медицинский исследовательский центр кардиологии имени академика Е.И. Чазова» Министерства здравоохранения Российской Федерации

Медведев Олег Стефанович — доктор медицинских наук, профессор, заведующий кафедрой фармакологии факультета фундаментальной медицины 

119991, г. Москва, Ломоносовский просп. д. 27, корп. 1



Е. А. Полуэктова
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» (Сеченовский университет) Министерства здравоохранения Российской Федерации

Полуэктова Елена Александровна — доктор медицинских наук, профессор кафедры пропедевтики внутренних болезней, гастроэнтерологии и гепатологии

119435, г. Москва, ул. Погодинская, д. 1, стр. 1



А. В. Кудряцева
ФГБУН «Институт молекулярной биологии им. В. А. Энгельгардта Российской академии наук»

Кудрявцева Анна Викторовна — кандидат биологических наук, заведующая лабораторией постгеномных исследований, заместитель директора по научной работе 

119334, г. Москва, ул. Вавилова, 32, стр. 1



И. Р. Бахтогаримов
ФГБУН «Институт молекулярной биологии им. В. А. Энгельгардта Российской академии наук»

Бахтогаримов Ильдар Рамилевич — аспирант, старший лаборант лаборатории постгеномных исследований

119334, г. Москва, ул. Вавилова, 32, стр. 1



А. Е. Карчевская
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» (Сеченовский университет) Министерства здравоохранения Российской Федерации; ФГАУ «Национальный медицинский исследовательский центр нейрохирургии им. академика Н.Н. Бурденко» Министерства здравоохранения Российской Федерации; ФГБУН «Институт высшей нервной деятельности и нейрофизиологии» Российской академии наук
Россия

Карчевская Анна Евгеньевна — младший научный сотрудник лаборатории общей и клинической нейрофизиологии; медицинский психолог; студентка 

119048, Москва, Трубецкая ул., 8, стр. 2



Список литературы

1. Lynch S.V., Pedersen O. The Human Intestinal Microbiome in Health and Disease. N Engl J Med. 2016;375(24):2369–79. DOI: 10.1056/NEJMra1600266

2. Gill S.R., Pop M., Deboy R.T., Eckburg P.B., Turnbaugh P.J., Samuel B.S., et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312(5778):1355– 9. DOI: 10.1126/science.1124234

3. Adak A., Khan M.R. An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 2019;76(3):473–93. DOI: 10.1007/s00018-018-2943-4

4. Zhu H., Zhang H., Xu Y., Laššáková S., Korabečná M., Neužil P. PCR past, present and future. BioTechniques. 2020;69(4):317–25. DOI: 10.2144/btn-2020-0057

5. Mohsina K., Kaur M., Bowman J.P., Powell S., Tamplin M.L. qPCR quantification of Carnobacterium maltaromaticum, Brochothrix thermosphacta, and Serratia liquefaciens growth kinetics in mixed culture. Journal of Microbiological Methods. 2020;175:105961. DOI: 10.1016/j.mimet.2020.105961

6. Kralik P., Ricchi M. A Basic Guide to Real Time PCR in Microbial Diagnostics: Definitions, Parameters, and Everything. Front Microbiol. 2017;8. DOI: 10.3389/ fmicb.2017.00108

7. Волков А.Н., Начева Л.В., Захарова Ю.В. Молекулярно-генетические методы в практике современных медико-биологических исследований. Часть II: использование ПЦР в диагностике инфекционных заболеваний человека. Фундаментальная и клиническая медицина. 2021;6(1):77–85. [Volkov A.N., Nacheva L.V., Zakharova Yu.V. Molecular genetic techniques in current biomedical research. Part II: PCR applications in diagnostics of human infectious diseases. Fundamental and Clinical Medicine. 2021;6(1):77–85 (In Russ.)]. DOI: 10.23946/2500-0764-2021-6-1-77-85

8. Johnson J.S., Spakowicz D.J., Hong B.Y., Petersen L.M., Demkowicz P., Chen L., et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019;10(1):5029. DOI: 10.1038/s41467-019-13036-1

9. Costea P.I., Hildebrand F., Arumugam M., Bäckhed F., Blaser M.J., Bushman F.D., et al. Enterotypes in the landscape of gut microbial community composition. Nat Microbiol. 2018;3(1):8–16. DOI: 10.1038/s41564-017-0072-8

10. Chen Y., Tian W., Shao Y., Li Y.J., Lin L.A., Zhang Y.J., et al. Miscanthus cultivation shapes rhizosphere microbial community structure and function as assessed by Illumina MiSeq sequencing combined with PICRUSt and FUNGUIld analyses. Arch Microbiol. 2020;202(5):1157–71. DOI: 10.1007/s00203-020-01830-1

11. Knights D., Ward T.L., McKinlay C.E., Miller H., Gonzalez A., McDonald D., Knight R. Rethinking “Enterotypes.” Cell Host & Microbe. 2014;16(4):433–7. DOI: 10.1016/j.chom.2014.09.013

12. Louis P., Hold G.L., Flint H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12(10):661–72. DOI: 10.1038/nrmicro3344

13. Iraporda C., Errea A., Romanin D.E., Cayet D., Pereyra E., Pignataro O., et al. Lactate and short chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells. Immunobiology. 2015;220(10):1161–9. DOI: 10.1016/j.imbio.2015.06.004

14. Zhao L., Zhang F., Ding X., Wu G., Lam Y.Y., Wang X. et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359(6380):1151–6. DOI: 10.1126/science.aao5774

15. LeBlanc J.G., Chain F., Martín R., Bermúdez-Humarán L.G., Courau S., Langella P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Fact. 2017;16(1):79. DOI: 10.1186/s12934-017-0691-z

16. Miranda P.M., De Palma G., Serkis V., Lu J., LouisAuguste M.P., McCarville J.L., et al. High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. Microbiome. 2018;6(1):57. DOI: 10.1186/s40168-018-0433-4

17. Rath S., Heidrich B., Pieper D.H., Vital M. Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome. 2017;5(1):54. DOI: 10.1186/ s40168-017-0271-9

18. Tap J., Störsrud S., Le Nevé B., Cotillard A., Pons N., Doré J., et al. Diet and gut microbiome interactions of relevance for symptoms in irritable bowel syndrome. Microbiome. 2021;9(1):74. DOI: 10.1186/s40168-021-01018-9

19. Hughes E.R., Winter M.G., Alves da Silva L., Muramatsu M.K., Jimenez A.G., Gillis C.C., et al. Reshaping of bacterial molecular hydrogen metabolism contributes to the outgrowth of commensal E. coli during gut inflammation. eLife. 2021;10:e58609. DOI: 10.7554/eLife.58609

20. Ross E.M., Moate P.J., Marett L.C., Cocks B.G., Hayes B.J. Metagenomic Predictions: From Microbiome to Complex Health and Environmental Phenotypes in Humans and Cattle. White BA, editor. PLoS One. 2013;8(9):e73056. DOI: 10.1371/journal.pone.0073056

21. Wang H., Zheng H., Browne F., Roehe R., Dewhurst R.J., Engel F., et al. Integrated metagenomic analysis of the rumen microbiome of cattle reveals key biological mechanisms associated with methane traits. Methods. 2017;124:108–19. DOI: 10.1016/j.ymeth.2017.05.029

22. Nguyen L.H., Ma W., Wang D.D., Cao Y., Mallick H., Gerbaba T.K., et al. Association Between Sulfur-Metabolizing Bacterial Communities in Stool and Risk of Distal Colorectal Cancer in Men. Gastroenterology. 2020;158(5):1313–25. DOI: 10.1053/j.gastro.2019.12.029

23. Rath S., Rud T., Karch A., Pieper D.H., Vital M. Pathogenic functions of host microbiota. Microbiome. 2018;6(1):174. DOI: 10.1186/s40168-018-0542-0

24. Zhang Z., Zhai H., Geng J., Yu R., Ren H., Fan H., Shi P. Large-Scale Survey of Gut Microbiota Associated With MHE Via 16S rRNA-Based Pyrosequencing. Amer J Gastroenterol. 2013;108(10):1601–11. DOI: 10.1038/ ajg.2013.221

25. Zuo Z., Fan H., Tang X., Chen Y., Xun L., Li Y., et al. Effect of different treatments and alcohol addiction on gut microbiota in minimal hepatic encephalopathy patients. Exp Ther Med. 2017. DOI: 10.3892/etm.2017.5141

26. Douglas G.M., Beiko R.G., Langille M.G.I. Predicting the Functional Potential of the Microbiome from Marker Genes Using PICRUSt. Methods Mol Biol. 2018;1849:169– 77. DOI: 10.1007/978-1-4939-8728-3_11. PMID: 30298254

27. Cheng M., Ning K. Stereotypes About Enterotype: the Old and New Ideas. Genomics, Proteomics & Bioinformatics. 2019;17(1):4–12. DOI: 10.1016/j.gpb.2018.02.004

28. Bustin S.A., Mueller R., Nolan T. Parameters for Successful PCR Primer Design. Methods Mol Biol. 2020;2065:5–22. DOI: 10.1007/978-1-4939-9833-3_2. PMID: 31578684

29. Brandt J., Albertsen M. Investigation of Detection Limits and the Influence of DNA Extraction and Primer Choice on the Observed Microbial Communities in Drinking Water Samples Using 16S rRNA Gene Amplicon Sequencing. Front Microbiol. 2018;9:2140. DOI: 10.3389/fmicb.2018.02140

30. Witzke M.C., Gullic A., Yang P., Bivens N.J., Adkins P.R.F., Ericsson A.C. Influence of PCR cycle number on 16S rRNA gene amplicon sequencing of low biomass samples. Journal of Microbiological Methods. 2020;176:106033. DOI: 10.1016/j.mimet.2020.106033

31. Zhao C., Dong H., Zhang Y., Li Y. Discovery of potential genes contributing to the biosynthesis of short-chain fatty acids and lactate in gut microbiota from systematic investigation in E. coli. npj Biofilms Microbiomes. 2019; 5(1):19. DOI: 10.1038/s41522-019-0092-7

32. Zolfo M., Asnicar F., Manghi P., Pasolli E., Tett A., Segata N. Profiling microbial strains in urban environments using metagenomic sequencing data. Biol Direct. 2018;13(1):9. DOI: 10.1186/s13062-018-0211-z

33. Ranjan R., Rani A., Metwally A., McGee H.S., Perkins D.L. Analysis of themicrobiome: Advantages of whole genome shotgun versus 16S amplicon sequencing. Biochemical and Biophysical Research Communications. 2016;469(4):967–77. DOI: 10.1016/j.bbrc.2015.12.083

34. Durazzi F., Sala C., Castellani G., Manfreda G., Remondini D., De Cesare A. Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota. Sci Rep. 2021;11(1):3030. doi:10.1038/s41598-021-82726-y.

35. Magnúsdóttir S., Heinken A., Kutt L., Ravcheev D.A., Bauer E., Noronha A., et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat Biotechnol. 2017;35(1):81–9. DOI: 10.1038/nbt.3703. Epub 2016 Nov 28. PMID: 27893703

36. Carini P., Delgado-Baquerizo M., Hinckley E.S., HollandMoritz H., Brewer T.E., Rue G., et al. Effects of Spatial Variability and Relic DNA Removal on the Detection of Temporal Dynamics in Soil Microbial Communities. mBio. 2020;11(1):e02776–19. DOI: 10.1128/mBio.02776-19

37. Morrison D.J., Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7(3):189–200. DOI: 10.1080/19490976.2015.1134082

38. Alexander C., Swanson K.S., Fahey G.C., Garleb K.A. Perspective: Physiologic Importance of Short-Chain Fatty Acids from Nondigestible Carbohydrate Fermentation. Advances in Nutrition. 2019;10(4):576–89. DOI: 10.1093/ advances/nmz004

39. Christiansen C.B., Gabe M.B.N., Svendsen B., Dragsted L.O., Rosenkilde M.M., Holst J.J. The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon. Am J Physiol Gastrointest Liver Physiol. 2018;315(1):G53–65. DOI: 10.1152/ ajpgi.00346.2017

40. Kasubuchi M., Hasegawa S., Hiramatsu T., Ichimura A., Kimura I. Dietary gut microbial metabolites, shortchain fatty acids, and host metabolic regulation. Nutrients. 2015;7(4):2839–49. DOI: 10.3390/nu7042839

41. Bach Knudsen K.E. Microbial degradation of wholegrain complex carbohydrates and impact on short-chain fatty acids and health. Adv Nutr. 2015;6(2):206–13. DOI: 10.3945/an.114.007450

42. Koh A., De Vadder F., Kovatcheva-Datchary P., Bäckhed F. From Dietary Fiber to Host Physiology: ShortChain Fatty Acids as Key Bacterial Metabolites. Cell. 2016;165(6):1332–45. DOI: 10.1016/j.cell.2016.05.041

43. Reichardt N., Duncan S.H., Young P., Belenguer A., McWilliam Leitch C., Scott K.P., et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 2014;8(6):1323–35. DOI: 10.1038/ismej.2014.14

44. Louis P., Flint H.J. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017;19(1):29–41. DOI: 10.1111/1462-2920.13589

45. Sivaprakasam S., Prasad P.D., Singh N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol Ther. 2016;164:144–51. DOI: 10.1016/j.pharmthera.2016.04.007

46. Layden B.T., Angueira A.R., Brodsky M., Durai V., Lowe W.L. Jr. Short chain fatty acids and their receptors: new metabolic targets. Transl Res. 2013;161(3):131–40. DOI: 10.1016/j.trsl.2012.10.007

47. He J., Zhang P., Shen L., Niu L., Tan Y., Chen L. et al. Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. Int J Mol Sci. 2020;21(17):6356. doi: 10.3390/ ijms21176356.

48. Unger M.M., Spiegel J., Dillmann K.U., Grundmann D., Philippeit H., Bürmann J., et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord. 2016;32:66–72. DOI: 10.1016/j.parkreldis.2016.08.019

49. Nagpal R., Neth B.J., Wang S., Craft S., Yadav H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine. 2019;47:529–542. DOI: 10.1016/j.ebiom.2019.08.032

50. Joseph N., Vasodavan K., Saipudin N.A., Yusof B.N.M., Kumar S., Nordin S.A. Gut microbiota and short-chain fatty acids (SCFAs) profiles of normal and overweight school children in Selangor after probiotics administration. Journal of Functional Foods. 2019;57:103–11. DOI: 10.1016/j.jff.2019.03.042

51. Murugesan S., Ulloa-Martínez M., Martínez-Rojano H., Galván-Rodríguez F.M., Miranda-Brito C., Romano M.C., et al. Study of the diversity and short-chain fatty acids production by the bacterial community in overweight and obese Mexican children. Eur J Clin Microbiol Infect Dis. 2015 Jul;34(7):1337–46. DOI: 10.1007/s10096-015-2355-4

52. McNabney S.M., Henagan T.M. Short Chain Fatty Acids in the Colon and Peripheral Tissues: A Focus on Butyrate, Colon Cancer, Obesity and Insulin Resistance. Nutrients. 2017;9(12):1348. DOI: 10.3390/nu9121348

53. Li X., Shimizu Y., Kimura I. Gut microbial metabolite short-chain fatty acids and obesity. Biosci Microbiota Food Health. 2017;36(4):135–40. DOI: 10.12938/bmfh.17-010

54. Canfora E.E., Jocken J.W., Blaak E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015;11(10):577–91. DOI: 10.1038/nrendo.2015.128

55. Wenzel T.J., Gates E.J., Ranger A.L., Klegeris A. Short-chain fatty acids (SCFAs) alone or in combination regulate select immune functions of microglia-like cells. Mol Cell Neurosci. 2020;105:103493. DOI: 10.1016/j. mcn.2020.103493

56. Pluznick J.L. Gut microbiota in renal physiology: focus on short-chain fatty acids and their receptors. Kidney Int. 2016;90(6):1191–8. DOI: 10.1016/j.kint.2016.06.033

57. Esgalhado M., Kemp J.A., Damasceno N.R., Fouque D., Mafra D. Short-chain fatty acids: a link between prebiotics and microbiota in chronic kidney disease. Future Microbiol. 2017;12:1413–25. DOI: 10.2217/fmb-2017-0059

58. Calderón-Pérez L., Gosalbes M.J., Yuste S., Valls R.M., Pedret A., Llauradó E., et al. Gut metagenomic and short chain fatty acids signature in hypertension: a cross-sectional study. Sci Rep. 2020;10(1):6436. DOI: 10.1038/ s41598-020-63475-w

59. Yang F., Chen H., Gao Y., An N., Li X., Pan X., et al. Gut microbiota-derived short-chain fatty acids and hypertension: Mechanism and treatment. Biomed Pharmacother. 2020;130:110503. DOI: 10.1016/j.biopha.2020.110503

60. Chambers E.S., Preston T., Frost G., Morrison D.J. Role of Gut Microbiota-Generated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health. Curr Nutr Rep. 2018;7(4):198–206. DOI: 10.1007/s13668-018-0248-8

61. Zeng H., Umar S., Rust B., Lazarova D., Bordonaro M. Secondary Bile Acids and Short Chain Fatty Acids in the Colon: A Focus on Colonic Microbiome, Cell Proliferation, Inflammation, and Cancer. IJMS. 2019;20(5):1214. DOI: 10.3390/ijms20051214

62. Ho L., Ono K., Tsuji M., Mazzola P., Singh R., Pasinetti G.M. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev Neurother. 2018;18(1):83–90. DOI: 10.1080/14737175.2018.1400909

63. Lachmandas E., van den Heuvel C.N., Damen M.S., Cleophas M.C., Netea M.G., van Crevel R. Diabetes Mellitus and Increased Tuberculosis Susceptibility: The Role of Short-Chain Fatty Acids. J Diabetes Res. 2016;2016:6014631. DOI: 10.1155/2016/6014631

64. Morris G., Berk M., Carvalho A., Caso J.R., Sanz Y., Walder K., Maes M. The Role of the Microbial Metabolites Including Tryptophan Catabolites and Short Chain Fatty Acids in the Pathophysiology of ImmuneInflammatory and Neuroimmune Disease. Mol Neurobiol. 2017;54(6):4432–51. DOI: 10.1007/s12035-016-0004-2

65. Park J., Goergen C.J., HogenEsch H., Kim C.H. Chronically Elevated Levels of Short-Chain Fatty Acids Induce T Cell-Mediated Ureteritis and Hydronephrosis. J Immunol. 2016;196(5):2388–400. DOI: 10.4049/jimmunol.1502046

66. Tirosh A., Calay E.S., Tuncman G., Claiborn K.C., Inouye K.E., Eguchi K., et al. The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. Sci Transl Med. 2019;11(489):eaav0120. DOI: 10.1126/scitranslmed. aav0120

67. Nagpal R., Wang S., Solberg Woods L.C., Seshie O., Chung S.T., Shively C.A., et al. Comparative Microbiome Signatures and Short-Chain Fatty Acids in Mouse, Rat, Non-human Primate, and Human Feces. Front Microbiol. 2018;9:2897. DOI: 10.3389/fmicb.2018.02897

68. Baxter N.T., Schmidt A.W., Venkataraman A., Kim K.S., Waldron C., Schmidt T.M. Dynamics of Human Gut Microbiota and Short-Chain Fatty Acids in Response to Dietary Interventions with Three Fermentable Fibers. mBio. 2019;10(1):e02566-18. DOI: 10.1128/mBio.02566-18

69. Müller M., Hernández M.A.G., Goossens G.H., Reijnders D., Holst J.J., Jocken J.W.E., et al. Circulating but not faecal short-chain fatty acids are related to insulin sensitivity, lipolysis and GLP-1 concentrations in humans. Sci Rep. 2019;9(1):12515. DOI: 10.1038/s41598-019-48775-0

70. Rodríguez-Carrio J., López P., Sánchez B., González S., Gueimonde M., Margolles A., et al. Intestinal Dysbiosis Is Associated with Altered Short-Chain Fatty Acids and SerumFree Fatty Acids in Systemic Lupus Erythematosus. Front Immunol. 2017;8:23. DOI: 10.3389/fimmu.2017.00023

71. Boets E., Gomand S.V., Deroover L., Preston T., Vermeulen K., De Preter V., et al. Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: a stable isotope study. J Physiol. 2017;595(2):541–55. DOI: 10.1113/JP272613

72. Goffredo M., Mass K., Parks E.J., Wagner D.A., McClure E.A., Graf J., et al. Role of Gut Microbiota and Short Chain Fatty Acids in Modulating Energy Harvest and Fat Partitioning in Youth. J Clin Endocrinol Metab. 2016;101(11):4367–76. DOI: 10.1210/jc.2016-1797

73. Parada Venegas D., De la Fuente M.K., Landskron G., González M.J., Quera R., Dijkstra G., et al. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front Immunol. 2019;10:277. DOI: 10.3389/fimmu.2019.00277

74. Tripolt N.J., Leber B., Triebl A., Köfeler H., Stadlbauer V., Sourij H. Effect of Lactobacillus casei Shirota supplementation on trimethylamine-N-oxide levels in patients with metabolic syndrome: An open-label, randomized study. Atherosclerosis. 2015;242(1):141–4. DOI: 10.1016/j.atherosclerosis.2015.05.005

75. Al-Rubaye H., Perfetti G., Kaski J.C. The Role of Microbiota in Cardiovascular Risk: Focus on Trimethylamine Oxide. Curr Probl Cardiol. 2019;44(6):182–96. DOI: 10.1016/j.cpcardiol.2018.06.005

76. Nowiński A., Ufnal M. Trimethylamine N-oxide: A harmful, protective or diagnostic marker in lifestyle diseases? Nutrition. 2018;46:7–12. DOI: 10.1016/j.nut.2017.08.001

77. Cho C.E., Caudill M.A. Trimethylamine-N-Oxide: Friend, Foe, or Simply Caught in the Cross-Fire? Trends Endocrinol Metab. 2017;28(2):121–30. DOI: 10.1016/j.tem.2016.10.005

78. Zeisel S.H., Warrier M. Trimethylamine N-Oxide, the Microbiome, and Heart and Kidney Disease. Annu Rev Nutr. 2017;37:157–81. DOI: 10.1146/annurev-nutr-071816-064732

79. Canyelles M., Tondo M., Cedó L., Farràs M., EscolàGil J., Blanco-Vaca F. Trimethylamine N-Oxide: A Link among Diet, Gut Microbiota, Gene Regulation of Liver and Intestine Cholesterol Homeostasis and HDL Function. IJMS. 2018;19(10):3228. DOI: 10.3390/ijms19103228

80. Romano K.A., Vivas E.I., Amador-Noguez D., Rey F.E. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. mBio. 2015;6(2):e02481. DOI: 10.1128/mBio.02481-14

81. Velasquez M.T., Ramezani A., Manal A., Raj D.S. Trimethylamine N-Oxide: The Good, the Bad and the Unknown. Toxins (Basel). 2016;8(11):326. DOI: 10.3390/toxins8110326

82. Falony G., Vieira-Silva S., Raes J. Microbiology Meets Big Data: The Case of Gut Microbiota-Derived Trimethylamine. Annu Rev Microbiol. 2015;69:305–21. DOI: 10.1146/annurev-micro-091014-104422

83. Zhu Y., Li Q., Jiang H. Gut microbiota in atherosclerosis: focus on trimethylamine N-oxide. APMIS. 2020;128(5):353–66. DOI: 10.1111/apm.13038

84. Bennett B.J., de Aguiar Vallim T.Q., Wang Z., Shih D.M., Meng Y., Gregory J., et al. Trimethylamine-Noxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 2013;17(1):49–60. DOI: 10.1016/j.cmet.2012.12.011

85. Chung S.J., Rim J.H., Ji D., Lee S., Yoo H.S., Jung J.H., et al. Gut microbiota-derived metabolite trimethylamine N-oxide as a biomarker in early Parkinson’s disease. Nutrition. 2021;83:111090. DOI: 10.1016/j. nut.2020.111090

86. Wu D., Cao M., Li N., Zhang A., Yu Z., Cheng J., et al. Effect of trimethylamine N-oxide on inflammation and the gut microbiota in Helicobacter pylori-infected mice. Int Immunopharmacol. 2020;81:106026. DOI: 10.1016/j. intimp.2019.106026

87. Wang X., Li X., Dong Y. Vitamin D Decreases Plasma Trimethylamine-N-oxide Level in Mice by Regulating Gut Microbiota. Biomed Res Int. 2020;2020:9896743. DOI: 10.1155/2020/9896743

88. Hoyles L., Jiménez-Pranteda M.L., Chilloux J., Brial F., Myridakis A., Aranias T., et al. Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota. Microbiome. 2018;6(1):73. DOI: 10.1186/s40168-018-0461-0

89. Borrel G., McCann A., Deane J., Neto M.C., Lynch D.B., Brugère J.F., O’Toole P.W. Genomics and metagenomics of trimethylamine-utilizing Archaea in the human gut microbiome. ISME J. 2017;11(9):2059–74. DOI: 10.1038/ismej.2017.72

90. Liu Y., Dai M. Trimethylamine N-Oxide Generated by the Gut Microbiota Is Associated with Vascular Inflammation: New Insights into Atherosclerosis. Mediators Inflamm. 2020;2020:4634172. DOI: 10.1155/2020/4634172

91. Nam H.S. Gut Microbiota and Ischemic Stroke: The Role of Trimethylamine N-Oxide. J Stroke. 2019;21(2):151–9. DOI: 10.5853/jos.2019.00472

92. Subramaniam S., Fletcher C. Trimethylamine N-oxide: breathe new life. Br J Pharmacol. 2018;175(8):1344–53. DOI: 10.1111/bph.13959

93. Manor O., Zubair N., Conomos M.P., Xu X., Rohwer J.E., Krafft C.E., et al. A Multi-omic Association Study of Trimethylamine N-Oxide. Cell Rep. 2018 Jul 24;24(4):935–46. DOI: 10.1016/j.celrep.2018.06.096

94. Sikora M., Kiss N., Stec A., Giebultowicz J., Samborowska E., Jazwiec R., et al. Trimethylamine N-Oxide, a Gut Microbiota-Derived Metabolite, Is Associated with Cardiovascular Risk in Psoriasis: A Cross-Sectional Pilot Study. Dermatol Ther (Heidelb). 2021;11(4):1277–89. DOI: 10.1007/s13555-021-00547-3

95. Vogt N.M., Romano K.A., Darst B.F., Engelman C.D., Johnson S.C., Carlsson C.M., et al. The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer’s disease. Alz Res Therapy. 2018;10(1):124. DOI: 10.1186/s13195-018-0451-2

96. Matsuzawa Y., Nakahashi H., Konishi M., Sato R., Kawashima C., Kikuchi S., et al. Microbiota-derived Trimethylamine N-oxide Predicts Cardiovascular Risk After STEMI. Sci Rep. 2019;9(1):11647. DOI: 10.1038/s41598-019-48246-6

97. Dehghan P., Farhangi M.A., Nikniaz L., Nikniaz Z., Asghari-Jafarabadi M. Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) potentially increases the risk of obesity in adults: An exploratory systematic review and dose-response meta- analysis. Obes Rev. 2020;21(5):e12993. DOI: 10.1111/obr.12993

98. Macpherson M.E., Hov J.R., Ueland T., Dahl T.B., Kummen M., et al. Gut Microbiota-Dependent Trimethylamine N-Oxide Associates With Inflammation in Common Variable Immunodeficiency. Front Immunol. 2020;11:574500. DOI: 10.3389/fimmu.2020.574500

99. Naghipour S., Cox A.J., Peart J.N., Du Toit E.F., Headrick J.P. Trimethylamine N-oxide: heart of the microbiota-CVD nexus? Nutr Res Rev. 2021;34(1):125–46. DOI: 10.1017/S0954422420000177

100. Yin J., Liao S.X., He Y., Wang S., Xia G.H., Liu F.T., et al. Dysbiosis of Gut Microbiota With Reduced Trimethylamine-N-Oxide Level in Patients With LargeArtery Atherosclerotic Stroke or Transient Ischemic Attack. J Am Heart Assoc. 2015;4(11):e002699. DOI: 10.1161/JAHA.115.002699

101. Cho C.E., Aardema N.D.J., Bunnell M.L., Larson D.P., Aguilar S.S., Bergeson J.R., et al. Effect of Choline Forms and Gut Microbiota Composition on Trimethylamine-N-Oxide Response in Healthy Men. Nutrients. 2020;12(8):2220. DOI: 10.3390/nu12082220

102. Liu Z.Y., Tan X.Y., Li Q.J., Liao G.C., Fang A.P., et al. Trimethylamine N-oxide, a gut microbiota-dependent metabolite of choline, is positively associated with the risk of primary liver cancer: a case-control study. Nutr Metab (Lond). 2018;15(1):81. DOI: 10.1186/s12986-018-0319-2

103. Xu K.Y., Xia G.H., Lu J.Q., Chen M.X., Zhen X., et al. Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients. Sci Rep. 2017;7(1):1445. DOI: 10.1038/s41598-017-01387-y

104. Sun T., Zhang Y., Yin J., Peng X., Zhou L., Huang S., et al. Association of Gut Microbiota-Dependent Metabolite Trimethylamine N-Oxide with First Ischemic Stroke. J Atheroscler Thromb. 2021;28(4):320–8. DOI: 10.5551/jat.55962

105. Farhangi M.A. Gut microbiota-dependent trimethylamine N-oxide and all-cause mortality: Findings from an updated systematic review and meta-analysis. Nutrition. 2020;78:110856. DOI: 10.1016/j.nut.2020.110856

106. Farhangi M.A., Vajdi M. Novel findings of the association between gut microbiota-derived metabolite trimethylamine N-oxide and inflammation: results from a systematic review and dose-response meta-analysis. Crit Rev Food Sci Nutr. 2020;60(16):2801-2823. doi: 10.1080/10408398.2020.1770199.

107. Sahakian A.B., Jee S.R., Pimentel M. Methane and the gastrointestinal tract. Dig Dis Sci. 2010 Aug;55(8):2135– 43. DOI: 10.1007/s10620-009-1012-0

108. Levitt M.D. Production and excretion of hydrogen gas in man. N Engl J Med. 1969 Jul 17;281(3):122–7. DOI: 10.1056/NEJM196907172810303

109. Zhang Y., Xu J., Yang H. Hydrogen: An Endogenous Regulator of Liver Homeostasis. Front Pharmacol. 2020 Jun 11;11:877. DOI: 10.3389/fphar.2020.00877

110. Carbonero F., Benefiel A.C., Gaskins H.R. Contributions of the microbial hydrogen economy to colonic homeostasis. Nat Rev Gastroenterol Hepatol. 2012 Sep;9(9):504–18. DOI: 10.1038/nrgastro.2012.85

111. Wolf P.G., Biswas A., Morales S.E., Greening C., Gaskins H.R. H2 metabolism is widespread and diverse among human colonic microbes. Gut Microbes. 2016 May 3;7(3):235–45. DOI: 10.1080/19490976.2016.1182288 112. Benoit S.L., Maier R.J., Sawers R.G., Greening C. Molecular Hydrogen Metabolism: a Widespread Trait of Pathogenic Bacteria and Protists. Microbiol Mol

112. Biol Rev. 2020 Jan 29;84(1):e00092-19. DOI: 10.1128/MMBR.00092-19

113. Flint H.J., Scott K.P., Duncan S.H., Louis P., Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 2012 Jul-Aug;3(4):289–306. DOI: 10.4161/gmic.19897

114. Nishimura N., Tanabe H., Komori E., Sasaki Y., Inoue R., Yamamoto T. Transplantation of High Hydrogen-Producing Microbiota Leads to Generation of Large Amounts of Colonic Hydrogen in Recipient Rats Fed High Amylose Maize Starch. Nutrients. 2018 Jan 29;10(2):144. DOI: 10.3390/nu10020144

115. Kawashima M., Tsuno S., Matsumoto M., Tsubota K. Hydrogen-producing milk to prevent reduction in tear stability in persons using visual display terminals. Ocul Surf. 2019 Oct;17(4):714–21. DOI: 10.1016/j.jtos.2019.07.008

116. Ohsawa I., Ishikawa M., Takahashi K., Watanabe M., Nishimaki K., Yamagata K., et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007 Jun;13(6):688–94. DOI: 10.1038/nm1577

117. Liu S., Liu K., Sun Q., Liu W., Xu W., Denoble P., et al. Consumption of hydrogen water reduces paraquatinduced acute lung injury in rats. J Biomed Biotechnol. 2011;2011:305086. DOI: 10.1155/2011/305086

118. Iketani M., Sekimoto K., Igarashi T., Takahashi M., Komatsu M., Sakane I. et al. Administration of hydrogen-rich water prevents vascular aging of the aorta in LDL receptor-deficient mice. Sci Rep. 2018;8(1):16822. DOI: 10.1038/s41598-018-35239-0

119. Li X., Li L., Liu X., Wu J., Sun X., Li Z., et al. Attenuation of Cardiac Ischaemia-reperfusion Injury by Treatment with Hydrogen-rich Water. Curr Mol Med. 2019;19(4):294–302. DOI: 10.2174/1566524019666190321113544

120. Gao Q., Song H., Wang X.T., Liang Y., Xi Y.J., Gao Y., et al. Molecular hydrogen increases resilience to stress in mice. Sci Rep. 2017;7(1):9625. DOI: 10.1038/s41598-017-10362-6

121. He B., Zhang Y., Kang B., Xiao J., Xie B., Wang Z. Protection of oral hydrogen water as an antioxidant on pulmonary hypertension. Mol Biol Rep. 2013;40(9):5513– 21. DOI: 10.1007/s11033-013-2653-9

122. Kishimoto Y., Kato T., Ito M., Azuma Y., Fukasawa Y., Ohno K., et al. Hydrogen ameliorates pulmonary hypertension in rats by anti-inflammatory and antioxidant effects. J Thorac Cardiovasc Surg. 2015;150(3):645–54. e3. DOI: 10.1016/j.jtcvs.2015.05.052

123. Wang W.L., Ge T.Y., Chen X., Mao Y., Zhu Y.Z. Advances in the Protective Mechanism of NO, H2S, and H2 in Myocardial Ischemic Injury. Front Cardiovasc Med. 2020;7:588206. DOI: 10.3389/fcvm.2020.588206

124. Barancik M., Kura B., LeBaron T.W., Bolli R., Buday J., Slezak J. Molecular and Cellular Mechanisms Associated with Effects of Molecular Hydrogen in Cardiovascular and Central Nervous Systems. Antioxidants (Basel). 2020;9(12):1281. DOI: 10.3390/antiox9121281

125. Slezak J., Kura B., LeBaron T.W., Singal P.K., Buday J., Barancik M. Oxidative Stress and Pathways of Molecular Hydrogen Effects in Medicine. Curr Pharm Des. 2021;27(5):610–25. DOI: 10.2174/138161282666620082 1114016

126. Alshami A., Einav S., Skrifvars M.B., Varon J. Administration of inhaled noble and other gases after cardiopulmonary resuscitation: A systematic review. Am J Emerg Med. 2020;38(10):2179–84. DOI: 10.1016/j.ajem.2020.06.066

127. Ono H., Nishijima Y., Adachi N., Sakamoto M., Kudo Y., Kaneko K., et al. A basic study on molecular hydrogen (H2) inhalation in acute cerebral ischemia patients for safety check with physiological parameters and measurement of blood H2 level. Med Gas Res. 2012;2(1):21. DOI: 10.1186/2045-9912-2-21

128. Tamura T., Hayashida K., Sano M., Suzuki M., Shibusawa T., Yoshizawa J., et al. Feasibility and Safety of Hydrogen Gas Inhalation for Post-Cardiac Arrest Syndrome - First-in-Human Pilot Study. Circ J. 2016;80(8):1870–3. DOI: 10.1253/circj.CJ-16-0127

129. Tamura T., Hayashida K., Sano M., Onuki S., Suzuki M. Efficacy of inhaled HYdrogen on neurological outcome following BRain Ischemia During post-cardiac arrest care (HYBRID II trial): study protocol for a randomized controlled trial. Trials. 2017;18(1):488. DOI: 10.1186/s13063-017-2246-3

130. Tamura T., Suzuki M., Hayashida K., Kobayashi Y., Yoshizawa J., Shibusawa T., et al. Hydrogen gas inhalation alleviates oxidative stress in patients with post-cardiac arrest syndrome. J Clin Biochem Nutr. 2020;67(2):214–21. DOI: 10.3164/jcbn.19-101

131. Sakai T., Sato B., Hara K., Hara Y., Naritomi Y., Koyanagi S., Hara H., Nagao T., Ishibashi T. Consumption of water containing over 3.5 mg of dissolved hydrogen could improve vascular endothelial function. Vasc Health Risk Manag. 2014;10:591–7. DOI: 10.2147/VHRM.S68844

132. Ishibashi T., Kawamoto K., Matsuno K., Ishihara G., Baba T., Komori N. Peripheral endothelial function can be improved by daily consumption of water containing over 7 ppm of dissolved hydrogen: A randomized controlled trial. PLoS One. 2020;15(5):e0233484. DOI: 10.1371/journal.pone.0233484

133. Nakayama M., Itami N., Suzuki H., Hamada H., Yamamoto R., Tsunoda K., et al. Novel haemodialysis (HD) treatment employing molecular hydrogen (H2)enriched dialysis solution improves prognosis of chronic dialysis patients: A prospective observational study. Sci Rep. 2018;8(1):254. DOI: 10.1038/s41598-017-18537-x

134. Nakayama M., Watanabe K., Hayashi Y., Terawaki H., Zhu W.J., Kabayama S., Ito S. Translational Research of Peritoneal Dialysis Solution with Dissolved Molecular Hydrogen. Contrib Nephrol. 2018;196:162– 70. DOI: 10.1159/000485717

135. Lu H., Chen W., Liu W., Si Y., Zhao T., Lai X., et al. Molecular hydrogen regulates PTEN-AKT-mTOR signaling via ROS to alleviate peritoneal dialysis-related peritoneal fibrosis. FASEB J. 2020;34(3):4134–46. DOI: 10.1096/fj.201901981R

136. Strocchi A., Levitt M.D. Factors affecting hydrogen production and consumption by human fecal flora. The critical roles of hydrogen tension and methanogenesis. J Clin Invest. 1992;89(4):1304–11. DOI: 10.1172/JCI115716

137. Christl S.U., Murgatroyd P.R., Gibson G.R., Cummings J.H. Production, metabolism, and excretion of hydrogen in the large intestine. Gastroenterology. 1992;102(4 Pt 1):1269–77.

138. Simrén M., Stotzer P.O. Use and abuse of hydrogen breath tests. Gut. 2006 Mar;55(3):297–303. DOI: 10.1136/gut.2005.075127

139. Shin W. Medical applications of breath hydrogen measurements. Anal Bioanal Chem. 2014;406(16):3931–9. DOI: 10.1007/s00216-013-7606-6

140. Корниенко Е.А., Кубалова С.С., Дмитриенко М.А., Джагацпанян И.Э. Клиническое применение водородного дыхательного теста в диагностике лактазной недостаточности и синдрома избыточного бактериального роста у детей раннего возраста. Педиатр. 2013;4(1):9–15.

141. Ивашкин К. В., Широкова Е.Н., Ивашкин В.Т., Плюснин С.В., Жаркова М.С., Масленников Р.В. и др. Сократительная функция миокарда у пациентов с циррозом печени и синдромом избыточного бактериального роста. Кардиология. 2019;59(4):67–73. doiDOI: 10.18087/cardio.2019.4.10252

142. Di Stefano M., Mengoli C., Bergonzi M., Pagani E., Corazza G.R. Hydrogen breath test and intestinal gas production. Eur Rev Med Pharmacol Sci. 2013;17 Suppl 2:36–8.

143. Rezaie A., Buresi M., Lembo A., Lin H., McCallum R., Rao S., et al. Hydrogen and Methane-Based Breath Testing in Gastrointestinal Disorders: The North American Consensus. Am J Gastroenterol. 2017;112(5):775–84. DOI: 10.1038/ajg.2017.46

144. Hammer H.F., Fox M.R., Keller J., Salvatore S., Basilisco G., Hammer J., et al. European H2-CH4-breath test group. European guideline on indications, performance, and clinical impact of hydrogen and methane breath tests in adult and pediatric patients: European Association for Gastroenterology, Endoscopy and Nutrition, European Society of Neurogastroenterology and Motility, and European Society for Paediatric Gastroenterology Hepatology and Nutrition consensus. United European Gastroenterol J. 2022;10(1):15–40. DOI: 10.1002/ueg2.12133

145. Nava G.M., Carbonero F., Croix J.A., Greenberg E., Gaskins H.R. Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon. ISME J. 2012;6(1):57–70. DOI: 10.1038/ismej.2011.90

146. Miller T.L., Wolin M.J. Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch Microbiol. 1985;141(2):116–22. DOI: 10.1007/BF00423270

147. Gaci N., Borrel G., Tottey W., O’Toole P.W., Brugère J.F. Archaea and the human gut: new beginning of an old story. World J Gastroenterol. 2014;20(43):16062–78. DOI: 10.3748/wjg.v20.i43.16062

148. Palmer C., Bik E.M., DiGiulio D.B., Relman D.A., Brown P.O. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5(7):e177. DOI: 10.1371/journal.pbio.0050177

149. Abell G.C.J., Michael A. Conlon & Alexandra L. McOrist Methanogenic archaea in adult human faecal samples are inversely related to butyrate concentration, Microbial Ecology in Health and Disease, 2006;18:3–4:154–160. DOI: 10.1080/08910600601048969.

150. Polag D., Leiß O., Keppler F. Age dependent breath methane in the German population. Sci Total Environ. 2014;481:582–7. DOI: 10.1016/j.scitotenv.2014.02.086

151. Polag D., Keppler F. Global methane emissions from the human body: Past, present and future. Atmospheric Environment. 2019;214:116823. DOI: 10.1016/j.atmosenv.2019.116823

152. Chang, B.W., Pimentel M., Christopher J., Chang, K., Chua A. Rezaie Mo1865 Prevalence of Excessive Intestinal Methane Production and Its Variability With Age and Gender: A Large-Scale Database Analysis. Gastroenterology. 2015;148(4):S729–30. DOI: 10.1016/S0016-5085(15)32494-X

153. Takakura W., Oh S.J., Singer-Englar T., Mirocha J., Leite G., Fridman A., et al. Comparing the rates of methane production in patients with and without appendectomy: results from a large-scale cohort. Sci Rep. 2020;10(1):867. DOI: 10.1038/s41598-020-57662-y

154. Chen J., Sali A., Vitetta L. The gallbladder and vermiform appendix influence the assemblage of intestinal microorganisms. Future Microbiol. 2020 May;15:541–55. DOI: 10.2217/fmb-2019-0325

155. Nishijima S., Suda W., Oshima K., Kim S.W., Hirose Y., Morita H., et al. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res. 2016;23(2):125–33. DOI: 10.1093/dnares/dsw002

156. O’Keefe S.J., Chung D., Mahmoud N., Sepulveda A.R., Manafe M., Arch J., et al. Why do African Americans get more colon cancer than Native Africans? J Nutr. 2007;137(1 Suppl):175S–182S. DOI: 10.1093/ jn/137.1.175S

157. Nava G.M., Carbonero F., Ou J., Benefiel A.C., O’Keefe S.J., Gaskins H.R. Hydrogenotrophic microbiota distinguish native Africans from African and European Americans. Environ Microbiol Rep. 2012;4(3):307– 15. DOI: 10.1111/j.1758-2229.2012.00334.x

158. Weaver G.A., Krause J.A., Miller T.L., Wolin M.J. Incidence of methanogenic bacteria in a sigmoidoscopy population: an association of methanogenic bacteria and diverticulosis. Gut. 1986;27(6):698–704. DOI: 10.1136/gut.27.6.698

159. Stewart J.A., Chadwick V.S., Murray A. Carriage, quantification, and predominance of methanogens and sulfate-reducing bacteria in faecal samples. Lett Appl Microbiol. 2006;43(1):58–63. DOI: 10.1111/j.1472-765X.2006.01906.x

160. Mathur R., Amichai M., Chua K.S., Mirocha J., Barlow G.M., Pimentel M. Methane and hydrogen positivity on breath test is associated with greater body mass index and body fat. J Clin Endocrinol Metab. 2013;98(4):E698–702. DOI: 10.1210/jc.2012-3144

161. Ozato N., Saito S., Yamaguchi T., Katashima M., Tokuda I., Sawada K., et al. Association between breath methane concentration and visceral fat area: a population-based cross-sectional study. J Breath Res. 2020;14(2):026008. DOI: 10.1088/1752-7163/ab61c6

162. Shah R.V., Murthy V.L., Abbasi S.A., Blankstein R., Kwong R.Y., Goldfine A.B., et al. Visceral adiposity and the risk of metabolic syndrome across body mass index: the MESA Study. JACC Cardiovasc Imaging. 2014;7(12):1221–35. DOI: 10.1016/j.jcmg.2014.07.017

163. Saito S., Mori A., Osaki N., Katsuragi Y. Diacylglycerol Enhances the Effects of Alpha-Linolenic Acid Against Visceral Fat: A Double-Blind Randomized Controlled Trial. Obesity (Silver Spring). 2017;25(10):1667– 75. DOI: 10.1002/oby.21938

164. Chatterjee S., Park S., Low K., Kong Y., Pimentel M. The degree of breath methane production in IBS correlates with the severity of constipation. Am J Gastroenterol. 2007;102(4):837–41. DOI: 10.1111/j.1572-0241.2007.01072.x

165. Singh P., Duehren S., Katon J., Rangan V., Ballou S., Patel R., et al. Breath Methane Does Not Correlate With Constipation Severity or Bloating in Patients With Constipation. J Clin Gastroenterol. 2020;54(4):365–9. DOI: 10.1097/MCG.0000000000001239

166. Sogodogo E., Doumbo O., Aboudharam G., Kouriba B., Diawara O., Koita H., et al. First characterization of methanogens in oral cavity in Malian patients with oral cavity pathologies. BMC Oral Health. 2019;19(1):232. DOI: 10.1186/s12903-019-0929-8

167. Erdrich S., Tan E.C.K., Hawrelak J.A., Myers S.P., Harnett J.E. Hydrogen-methane breath testing results influenced by oral hygiene. Sci Rep. 2021;11(1):26. DOI: 10.1038/s41598-020-79554-x

168. Barton L.L., Ritz N.L., Fauque G.D., Lin H.C. Sulfur Cycling and the Intestinal Microbiome. Dig Dis Sci. 2017;62(9):2241–57. DOI: 10.1007/s10620-017-4689-5

169. Beaumont M., Portune K.J., Steuer N., Lan A., Cerrudo V., Audebert M., et al. Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: a randomized, parallel, double-blind trial in overweight humans. Am J Clin Nutr. 2017;106(4):1005–19. DOI: 10.3945/ajcn.117.158816

170. Birchenough G., Schroeder B.O., Bäckhed F., Hansson G.C. Dietary destabilisation of the balance between the microbiota and the colonic mucus barrier. Gut Microbes. 2019;10(2):246–50. DOI: 10.1080/19490976.2018.1513765

171. Tomasova L., Konopelski P., Ufnal M. Gut Bacteria and Hydrogen Sulfide: The New Old Players in Circulatory System Homeostasis. Molecules. 2016;21(11):1558. DOI: 10.3390/molecules21111558

172. Guo F.F., Yu T.C., Hong J., Fang J.Y. Emerging Roles of Hydrogen Sulfide in Inflammatory and Neoplastic Colonic Diseases. Front Physiol. 2016;7:156. DOI: 10.3389/fphys.2016.00156

173. Rey F.E., Gonzalez M.D., Cheng J., Wu M., Ahern P.P., Gordon J.I. Metabolic niche of a prominent sulfatereducing human gut bacterium. Proc Natl Acad Sci USA. 2013;110(33):13582–7. DOI: 10.1073/pnas.1312524110

174. Pimentel M., Saad R.J., Long M.D., Rao S.S.C. ACG Clinical Guideline: Small Intestinal Bacterial Overgrowth. Am J Gastroenterol. 2020;115(2):165–78. DOI: 10.14309/ajg.0000000000000501

175. Shibuya N., Mikami Y., Kimura Y., Nagahara N., Kimura H. Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J Biochem. 2009;146(5):623–6. DOI: 10.1093/jb/mvp111

176. Bazhanov N., Ansar M., Ivanciuc T., Garofalo R.P., Casola A. Hydrogen Sulfide: A Novel Player in Airway Development, Pathophysiology of Respiratory Diseases, and Antiviral Defenses. Am J Respir Cell Mol Biol. 2017;57(4):403–10. DOI: 10.1165/rcmb.2017-0114TR

177. Bełtowski J. Synthesis, Metabolism, and Signaling Mechanisms of Hydrogen Sulfide: An Overview. Methods Mol Biol. 2019;2007:1–8. DOI: 10.1007/978-1-4939-9528-8_1

178. Suzuki Y., Saito J., Munakata M., Shibata Y. Hydrogen sulfide as a novel biomarker of asthma and chronic obstructive pulmonary disease. Allergol Int. 2021;70(2):181–9. DOI: 10.1016/j.alit.2020.10.003

179. Flannigan K.L., McCoy K.D., Wallace J.L. Eukaryotic and prokaryotic contributions to colonic hydrogen sulfide synthesis. Am J Physiol Gastrointest Liver Physiol. 2011;301(1):G188–93. DOI: 10.1152/ajpgi.00105.2011

180. Shen X., Carlström M., Borniquel S., Jädert C., Kevil C.G., Lundberg J.O. Microbial regulation of host hydrogen sulfide bioavailability and metabolism. Free Radic Biol Med. 2013;60:195–200. DOI: 10.1016/j.freeradbiomed.2013.02.024

181. Yang G. H2S as a potential defense against COVID-19? Am J Physiol Cell Physiol. 2020;319(2):C244–9. DOI: 10.1152/ajpcell.00187.2020

182. Hampelska K., Jaworska M.M., Babalska Z.Ł., Karpiński T.M. The Role of Oral Microbiota in Intra-Oral Halitosis. J Clin Med. 2020;9(8):2484. DOI: 10.3390/jcm9082484

183. Laleman I., Dekeyser C., Wylleman A., Teughels W., Quirynen M. The OralChromaTM CHM-2: a comparison with the OralChromaTM CHM-1. Clin Oral Investig. 2020;24(8):2829–36. DOI: 10.1007/s00784-019-03148-9


Рецензия

Для цитирования:


Ивашкин В.Т., Медведев О.С., Полуэктова Е.А., Кудряцева А.В., Бахтогаримов И.Р., Карчевская А.Е. Прямые и косвенные методы изучения микробиоты человека. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2022;32(2):19-34. https://doi.org/10.22416/1382-4376-2022-32-2-19-34

For citation:


Ivashkin V.T., Medvedev O.S., Poluektova E.A., Kudryavtseva A.V., Bakhtogarimov I.R., Karchevskaya A.E. Direct and Indirect Methods for Studying Human Gut Microbiota. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2022;32(2):19-34. https://doi.org/10.22416/1382-4376-2022-32-2-19-34

Просмотров: 2522


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.


ISSN 1382-4376 (Print)
ISSN 2658-6673 (Online)