Preview

Russian Journal of Gastroenterology, Hepatology, Coloproctology

Advanced search

The Role of Nanomaterials in the Diagnosis and Treatment of Acute Pancreatitis

https://doi.org/10.22416/1382-4376-2023-33-5-20-27

Abstract

Аim: to show the clinical significance of nanomaterials in the diagnosis and treatment of acute pancreatitis.

Key points. It was possible to develop nanomaterials that improved the sensitivity of laboratory tests and the resolution of magnetic resonance imaging in the diagnosis of acute pancreatitis. The use of nanomaterials in the treatment of acute pancreatitis helps to relieve inflammation and reduce the degree of damage to the acinar cells of the pancreas. The use of nanoparticles can solve the problem of stable resistance of bacteria to antibacterial drugs.

Conclusion. Nanomaterials have shown high efficacy and safety in numerous in vitro and in vivo (animal) experiments in the diagnosis and treatment of acute pancreatitis.

About the Authors

S. A. Ponomar
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Sergey A. Ponomar — Cand. Sci. (Med.), Associate Professor at the Department of Hospital Surgery

119991, Moscow, Bolshaya Pirogovskaya str., 2, build. 4



E. A. Tarabrin
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Evgeniy A. Tarabrin — Dr. Sci. (Med.), Head of the Department of Hospital Surgery

119991, Moscow, Bolshaya Pirogovskaya str., 2, build. 4



Z. G. Berikhanov
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Zelimkhan G. Berikhanov — Cand. Sci. (Med.), Associate Professor at the Department of Hospital Surgery

119991, Moscow, Bolshaya Pirogovskaya str., 2, build. 4



References

1. Iannuzzi J.P., King J.A., Leong J.H., Quan J., Windsor J.W., Tanyingoh D., et al. Global incidence of acute pancreatitis is increasing over time: A systematic review and meta-analysis. Gastroenterology. 2022;162(1):122–34. DOI: 10.1053/j.gastro.2021.09.043

2. Petrov M.S., Yadav D. Global epidemiology and holistic prevention of pancreatitis. Nat Rev Gastroenterol Hepatol. 2018;16(3):175–84. DOI: 10.1038/s41575-018-0087-5

3. Xiao A.Y., Tan M.L.Y., Wu L.M., Asrani V.M., Windsor J.A., Yadav D., et al. Global incidence and mortality of pancreatic diseases: A systematic review, meta-analysis, and meta-regression of population-based cohort studies. Lancet Gastroenterol Hepatol. 2016;1(1):45–55. DOI: 10.1016/s2468-1253(16)30004-8

4. Petrov M.S., Shanbhag S., Chakraborty M., Phillips A.R.J., Windsor J.A. Organ failure and infection of pancreatic necrosis as determinants of mortality in patients with acute pancreatitis. Gastroenterology. 2010;139(3):813–20. DOI: 10.1053/j.gastro.2010.06.010

5. Gerasimenko J.V., Gryshchenko O., Ferdek P.E., Stapleton E., Hebert T.O.G., Bychkova S., et al. Ca2+ release-activated Ca2+ channel blockade as a potential tool in antipancreatitis therapy. Proc Natl Acad Sci USA. 2013;110(32):13186–91. DOI: 10.1073/pnas.1300910110

6. Aghdassi A.A., John D.S., Sendler M., Weiss F.U., Reinheckel T., Mayerle J., et al. Cathepsin D regulates cathepsin B activation and disease severity predominantly in inflammatory cells during experimental pancreatitis. J Biol Chem. 2018;293(3):1018–29. DOI: 10.1074/jbc. M117.814772

7. Mukherjee R., Mareninova O.A., Odinokova I.V., Huang W., Murphy J., Chvanov M., et al. Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: Inhibition prevents acute pancreatitis by protecting production of ATP. Gut. 2016;65(8):1333–46. DOI: 10.1136/gutjnl-2014-308553

8. Zeng Y., Wang X., Zhang W., Wu K., Ma J. Hypertriglyceridemia aggravates ER stress and pathogenesis of acute pancreatitis. Hepatogastroenterology. 2012;59(119):2318–26. DOI: 10.5754/hge12042

9. Lugea A., Tischler D., Nguyen J., Gong J., Gukovsky I., French S.W., et al. Adaptive unfolded protein response attenuates alcohol-induced pancreatic damage. Gastroenterology. 2011;140(3):987–97. DOI: 10.1053/j.gastro.2010.11.038

10. Antonucci L., Fagman J.B., Kim J.Y., Todoric J., Gukovsky I., Mackey M., et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci USA. 2015;112(45):E6166–74. DOI: 10.1073/pnas.1519384112

11. Sun B., Zhen X., Jiang X. Development of mesoporous silica-based nanoprobes for optical bioimaging applications. Biomater Sci. 2021;9(10):3603–20. DOI: 10.1039/d1bm00204j

12. Madkhali O.A., Sivagurunathan Moni S., Sultan M.H., Bukhary H.A., Ghazwani M., Alhakamy N.A., et al. Formulation and evaluation of injectable dextran sulfate sodium nanoparticles as a potent antibacterial agent. Sci Rep. 2021;11(1):9914. DOI: 10.1038/s41598-021-89330-0

13. Parekh K., Hariharan K., Qu Z., Rewatkar P., Cao Y., Moniruzzaman M., et al. Tacrolimus encapsulated mesoporous silica nanoparticles embedded hydrogel for the treatment of atopic dermatitis. Int J Pharm. 2021;608:121079. DOI: 10.1016/j.ijpharm.2021.121079

14. Yang N., Guo H., Cao C., Wang X., Song X., Wang W., et al. Infection microenvironment-activated nanoparticles for NIR-II photoacoustic imaging-guided photothermal/ chemodynamic synergistic anti-infective therapy. Biomaterials. 2021;275:120918. DOI: 10.1016/j.biomaterials.2021.120918

15. Chen D., Tang Y., Zhu J., Zhang J., Song X., Wang W., et al. Photothermal-pH-hypoxia responsive multifunctional nanoplatform for cancer photo-chemo therapy with negligible skin phototoxicity. Biomaterials. 2019;221:119422. DOI: 10.1016/j.biomaterials.2019.119422

16. Matull W.R., Pereira S.P., O'Donohue J.W. Biochemical markers of acute pancreatitis. J Clin Pathol. 2006;59(4):340–4. DOI: 10.1136/jcp.2002.002923

17. Yadav D., Agarwal N., Pitchumoni C.S. A critical evaluation of laboratory tests in acute pancreatitis. Am J Gastroenterol. 2002;97(6):1309–18. DOI: 10.1111/j.1572-0241.2002.05766.x

18. Attia M.S., Al-Radadi N.S. Progress of pancreatitis disease biomarker alpha amylase enzyme by new nano optical sensor. Biosens Bioelectron. 2016;86:413–9. DOI: 10.1016/j.bios.2016.06.079

19. Shi J., Deng Q., Li Y., Zheng M., Chai Z., Wan C., et al. A rapid and ultrasensitive tetraphenylethylene-based probe with aggregation-induced emission for direct detection of α-amylase in human body fluids. Anal Chem. 2018;90(22):13775–82. DOI: 10.1021/acs.analchem.8b04244

20. Frank B., Gottlieb K. Amylase normal, lipase elevated: is it pancreatitis? A case series and review of the literature. Am J Gastroenterol. 1999;94(2):463–9. DOI: 10.1111/j.1572-0241.1999.878_g.x

21. Yadav D., Nair S., Norkus E.P., Pitchumoni C.S. Nonspecific hyperamylasemia and hyperlipasemia in diabetic ketoacidosis: incidence and correlation with biochemical abnormalities. Am J Gastroenterol. 2000;95(11):3123–8. DOI: 10.1111/j.1572-0241.2000.03279.x

22. Heikius B., Niemelä S., Lehtola J., Karttunen T.J. Elevated pancreatic enzymes in inflammatory bowel disease are associated with extensive disease. Am J Gastroenterol. 1999;94(4):1062–9. DOI: 10.1111/j.1572-0241.1999.01015.x

23. Chakraborty D., Sarkar D., Ghosh A.K., Das P.K. Lipase sensing by naphthalene diimide based fluorescent organic nanoparticles: A solvent induced manifestation of self-assembly. Soft Matter. 2021;17(8):2170–80. DOI: 10.1039/ d0sm02056g

24. Shi J., Deng Q., Wan C., Zheng M., Huang F., Tang B. Fluorometric probing of the lipase level as acute pancreatitis biomarkers based on interfacially controlled aggregation-induced emission (AIE). Chem Sci. 2017;8(9):6188– 95. DOI: 10.1039/c7sc02189e

25. Saluja A., Dudeja V., Dawra R., Sah R.P. Early intra-acinar events in pathogenesis of pancreatitis. Gastroenterology. 2019;156(7):1979–93. DOI: 10.1053/j.gastro.2019.01.268

26. Guan S., Yue J., Sun W., Xu W., Liang C., Xu S. Ultrasensitive detection of trypsin in serum via nanochannel device. Anal Bioanal Chem. 2021;413(20):4939–45. DOI: 10.1007/s00216-021-03491-5

27. Garg R., Rustagi T. Management of hypertriglyceridemia induced acute pancreatitis. Biomed Res Int. 2018;2018:4721357. DOI: 10.1155/2018/4721357

28. Di Tocco A., Robledo S.N., Osuna Y., Sandoval-Cortez J., Granero A.M., Vettorazzi N.R., et al. Development of an electrochemical biosensor for the determination of triglycerides in serum samples based on a lipase/magnetite-chitosan/copper oxide nanoparticles/multiwalled carbon nanotubes/pectin composite. Talanta. 2018;190:30–7. DOI: 10.1016/j.talanta.2018.07.028

29. Banks P.A., Bollen T.L., Dervenis C., Gooszen H.G., Johnson C.D., Sarr M.G., et al. Classification of acute pancreatitis — 2012: Revision of the Atlanta classification and definitions by international consensus. Gut. 2013;62(1):102–11. DOI: 10.1136/gutjnl-2012-302779

30. Zhang H.-W., Wang L.-Q., Xiang Q.-F., Zhong Q., Chen L.-M., Xu C.-X., et al. Specific lipase-responsive polymer-coated gadolinium nanoparticles for MR imaging of early acute pancreatitis. Biomaterials. 2014;35(1):356– 67. DOI: 10.1016/j.biomaterials.2013.09.046

31. Tian B., Liu R., Chen S., Chen L., Liu F., Jia G., et al. Mannose-coated gadolinium liposomes for improved magnetic resonance imaging in acute pancreatitis. Int J Nanomedicine. 2017;12:1127–41. DOI: 10.2147/ijn.s123290

32. Chuang E.-Y., Lin K.-J., Huang T.-Y., Chen H.-L., Miao Y.-B., Lin P.-Y., et al. An intestinal ‘transformers’-like nanocarrier system for enhancing the oral bioavailability of poorly water-soluble drugs. ACS Nano. 2018;12(7):6389–97. DOI: 10.1021/acsnano.8b00470

33. Fisic E., Poropat G., Bilic-Zulle L., Licul V., Milic S., Stimac D. The role of IL-6, 8, and 10, sTNFr, CRP, and pancreatic elastase in the prediction of systemic complications in patients with acute pancreatitis. Gastroenterol Res Pract. 2013;2013:282645. DOI: 10.1155/2013/282645

34. Pérez S., Pereda J., Sabater L., Sastre J. Redox signaling in acute pancreatitis. Redox Biol. 2015;5:1–14. DOI: 10.1016/j.redox.2015.01.014

35. Khurana A., Anchi P., Allawadhi P., Kumar V., Sayed N., Packirisamy G., et al. Superoxide dismutase mimetic nanoceria restrains cerulein induced acute pancreatitis. Nanomedicine (Lond). 2019;14(14):1805–25. DOI: 10.2217/nnm-2018-0318

36. Kim D.E., Lee Y., Kim M., Lee S., Jon S., Lee S.-H. Bilirubin nanoparticles ameliorate allergic lung inflammation in a mouse model of asthma. Biomaterials. 2017;140:37– 44. DOI: 10.1016/j.biomaterials.2017.06.014

37. Yao Q., Jiang X., Kou L., Samuriwo A.T., Xu H.-L., Zhao Y.-Z. Pharmacological actions and therapeutic potentials of bilirubin in islet transplantation for the treatment of diabetes. Pharmacol Res. 2019;145:104256. DOI: 10.1016/j.phrs.2019.104256

38. Kim M.J., Lee Y., Jon S., Lee D.Y. PEGylated bilirubin nanoparticle as an anti-oxidative and anti-inflammatory demulcent in pancreatic islet xenotransplantation. Biomaterials. 2017;133:242–52. DOI: 10.1016/j.biomaterials.2017.04.029

39. Chen X., Ji B., Han B., Ernst S.A., Simeone D., Logsdon C.D. NF-κB activation in pancreas induces pancreatic and systemic inflammatory response. Gastroenterology. 2002;122(2):448–57. DOI: 10.1053/gast.2002.31060

40. Ju S.M., Youn G.S., Cho Y.S., Choi S.Y., Park J. Celastrol ameliorates cytokine toxicity and pro-inflammatory immune responses by suppressing NF-κB activation in RINm5F beta cells. BMB Rep. 2015;48(3):172–7. DOI: 10.5483/bmbrep.2015.48.3.147

41. Li H., Yuan Y., Zhang Y., He Q., Xu R., Ge F., et al. Celastrol inhibits IL-1β-induced inflammation in orbital fibroblasts through the suppression of NF-κB activity. Mol Med Rep. 2016;14(3):2799–806. DOI: 10.3892/mmr.2016.5570

42. Zhou X., Cao X., Tu H., Zhang Z.-R., Deng L. Inflammation-targeted delivery of celastrol via neutrophil membrane-coated nanoparticles in the management of acute pancreatitis. Mol Pharm. 2019;16(3):1397–405. DOI: 10.1021/acs.molpharmaceut.8b01342

43. Serda M., Szewczyk G., Krzysztyńska-Kuleta O., Korzuch J., Dulski M., Musioł R., et al. Developing [60] fullerene nanomaterials for better photodynamic treatment of non-melanoma skin cancers. ACS Biomater Sci Eng. 2020;6:5930–40. DOI: 10.1021/acsbiomaterials.0c00932

44. Wang C., Xiao Y., Zhu W., Chu J., Xu J., Zhao H., et al. Photosensitizer-modified MnO2 nanoparticles to enhance photodynamic treatment of abscesses and boost immune protection for treated mice. Small. 2020;16(28):e2000589. DOI: 10.1002/smll.202000589

45. Chuang E.-Y., Lin K.-J., Huang T.-Y., Chen H.-L., Miao Y.-B., Lin P.-Y., et al. An intestinal ‘transformers’-like nanocarrier system for enhancing the oral bioavailability of poorly water-soluble drugs. ACS Nano. 2018;12(7):6389–97. DOI: 10.1021/acsnano.8b00470

46. Werge M., Novovic S., Schmidt P.N., Gluud L.L. Infection increases mortality in necrotizing pancreatitis: A systematic review and meta-analysis. Pancreatology. 2016;16(5):698–707. DOI: 10.1016/j.pan.2016.07.004

47. Mowbray N.G., Ben-Ismaeil B., Hammoda M., Shingler G., Al-Sarireh B. The microbiology of infected pancreatic necrosis. Hepatobiliary Pancreat Dis Int. 2018;17(5):456–60. DOI: 10.1016/j.hbpd.2018.08.007

48. Ali J., Rafiq Q.A., Ratcliffe E. Antimicrobial resistance mechanisms and potential synthetic treatments. Future Sci OA. 2018;4(4):FSO290. DOI: 10.4155/fsoa-2017-0109

49. Panáček A., Kvítek L., Smékalová M., Večeřová R., Kolář M., Röderová M., et al. Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol. 2018;13(1):65–71. DOI: 10.1038/s41565-017-0013-y

50. Su Z., Sun D., Zhang L., He M., Jiang Y., Millar B., et al. Chitosan/silver nanoparticle/graphene oxide nanocomposites with multi-drug release, antimicrobial, and photothermal conversion functions. Materials (Basel). 2021;14(9):2351. DOI: 10.3390/ma14092351

51. Xu L., Wang Y.-Y., Huang J., Chen C.-Y., Wang Z.-X., Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 2020;10(20):8996–9031. DOI: 10.7150/thno.45413

52.


Supplementary files

Review

For citations:


Ponomar S.A., Tarabrin E.A., Berikhanov Z.G. The Role of Nanomaterials in the Diagnosis and Treatment of Acute Pancreatitis. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2023;33(5):20-27. https://doi.org/10.22416/1382-4376-2023-33-5-20-27

Views: 321


ISSN 1382-4376 (Print)
ISSN 2658-6673 (Online)