Pathogenesis of Disorders of the Motor Function of the Large Intestine in Functional Constipation
https://doi.org/10.22416/1382-4376-2024-34-3-24-37
Abstract
Aim: to analyze the scientific literature on the role of various factors in the mechanisms of development of functional constipation and to summarize the current data on its leading pathogenetic mechanisms.
Key points. Constipation occurs in 15 % of the adult population in the world and leads to a significant decrease in the quality of life, and in combination with some other symptoms may indicate the presence of an organic pathology of the gastrointestinal tract. The pathogenetic basis of functional constipation (FC) with slow intestinal transit is a decrease in colonic motor function, which is confirmed by the results of high-resolution manometry. FC is characterized by disturbances in such motor patterns of the colon as low and high amplitude propagating contractions, segmental non-propagating contractions, and general increases in pressure. The main FC mechanisms associated with neurogenic dysregulation include impaired function of the gray and white matter of the brain, as well as an increase in the tone of the sympathetic nervous system with a concomitant decrease in the influence of cholinergic nerves innervating the large intestine. A key role in the FC development belongs to a decrease in the pool of interstitial cells, which play the role of an intestinal pacemaker, due to slowing of their self-renewal. FC-associated changes in the enteric nervous system include a relative excess of the contribution of inhibitory influences and a decrease in the activity of cholinergic and serotonergic neurons that stimulate intestinal motility. A certain role in the occurrence of reduced motor function of the colon may have an imbalance in the production of intestinal hormones synthesized by enteroendocrine cells, namely, a deficiency of motility stimulants, which include motilin, gastrin, ghrelin and cholecystokinin, as well as a relative excess of hormones that suppress motility (somatostatin and vasoactive intestinal polypeptide). Changes in the composition of the intestinal microbiota can also contribute to the FC occurrence, which is associated with a dysfunction of the metabolite profile produced by intestinal bacteria.
Conclusions. Functional constipation is a classic multifactorial disease, in the etiology of which the adverse effects of the genotype are combined with multiple acquired risk factors. A more complete understanding of the molecular mechanisms of the FC development can serve as the basis for the emergence of new effective treatments for this common pathology.
Keywords
About the Authors
M. M. GalagudzaRussian Federation
Michael M. Galagudza — Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Science; Director of the Institute of Experimental Medicine; Professor at the Department of Pathophysiology
197341, Saint Petersburg, Akkuratova str., 2
Yu. P. Uspensky
Yury P. Uspenskiy — Dr. Sci. (Med.), Professor, Head of the Department of Faculty Therapy named after Professor V.A. Valdman; Professor of the Department of Internal Diseases of Dentistry faculty
194100, Saint Petersburg, Litovskaya str., 2
Yu. A. Fominykh
Yulia A. Fominykh — Dr. Sci. (Med.), Docent, Professor of the Department of Faculty Therapy named after Professor V.A. Valdman; Associate Professor of the Department of Internal Diseases of Dentistry Faculty
194100, Saint Petersburg, Litovskaya str., 2
D. Yu. Butko
Dmitriy Y. Butko — Dr. Sci. (Med), Professor, Head of the Department of Medical Rehabilitation and Sports Medicine
194100, Saint Petersburg, Litovskaya str., 2
References
1. Bharucha A.E., Lacy B.E. Mechanisms, evaluation, and management of chronic constipation. Gastroenterology. 2020;158(5):1232–49.e3. DOI: 10.1053/j.gastro.2019.12.034
2. Forootan M., Bagheri N., Darvishi M. Chronic constipation: A review of literature. Medicine (Baltimore). 2018;97(20):e10631. DOI: 10.1097/MD.0000000000010631
3. De Giorgio R., Ruggeri E., Stanghellini V., Eusebi L.H., Bazzoli F., Chiarioni G. Chronic constipation in the elderly: A primer for the gastroenterologist. BMC Gastroenterol. 2015;15:130. DOI: 10.1186/s12876-015-0366-3
4. Almario C.V., Ballal M.L., Chey W.D., Nordstrom C., Khanna D., Spiegel B.M.R. Burden of gastrointestinal symptoms in the United States: Results of a nationally representative survey of over 71,000 Americans. Am J Gastroenterol. 2018;113(11):1701–10. DOI: 10.1038/s41395018-0256-8
5. Faigel D.O. A clinical approach to constipation. Clin Cornerstone. 2002;4(4):11–21. DOI: 10.1016/s1098-3597(02)90002-5
6. Ivashkin V.T., Mayev I.V., Sheptulin A.A., Trukhmanov A.S., Poluektova Y.A., Baranskaya Y.K., et al. Diagnostics and treatment of chronic constipation in adults: clinical guidelines of the Russian gastroenterological association. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2017;27(3):75–83. (In Russ.)]. DOI: 10.22416/1382-4376-2017-27-3-75-83
7. Ravi K., Bharucha A.E., Camilleri M., Rhoten D., Bakken T., Zinsmeister A.R. Phenotypic variation of colonic motor functions in chronic constipation. Gastroenterology. 2010;138(1):89–97. DOI: 10.1053/j.gastro.2009.07.057
8. Dinning P.G., Smith T.K., Scott S.M. Pathophysiology of colonic causes of chronic constipation. Neurogastroenterol Motil. 2009;21 Suppl 2(Suppl 2):20–30. DOI: 10.1111/j.1365-2982.2009.01401.x
9. Zhao Q., Chen Y.Y., Xu D.Q., Yue S.J., Fu R.J., Yang J., et al. Action mode of gut motility, fluid and electrolyte transport in chronic constipation. Front Pharmacol. 2021;12:630249. DOI: 10.3389/fphar.2021.630249
10. Ishikawa M., Mibu R., Iwamoto T., Konomi H., Oohata Y., Tanaka M. Change in colonic motility after extrinsic autonomic denervation in dogs. Dig Dis Sci. 1997;42(9):1950–6. DOI: 10.1023/a:1018827613809
11. Mawe G.M., Sanders K.M., Camilleri M. Overview of the enteric nervous system. Semin Neurol. 2023;43(4):495–505. DOI: 10.1055/s-0043-1771466
12. Carabotti M., Scirocco A., Maselli M.A., Severi C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203–9.
13. Corsetti M., Costa M., Bassotti G., Bharucha A.E., Borrelli O., Dinning P., et al. First translational consensus on terminology and definitions of colonic motility in animals and humans studied by manometric and other techniques. Nat Rev Gastroenterol Hepatol. 2019;16(9):559– 79. DOI: 10.1038/s41575-019-0167-1
14. Corsetti M., Pagliaro G., Demedts I., Deloose E., Gevers A., Scheerens C., et al. Pan-colonic pressurizations associated with relaxation of the anal sphincter in health and disease: A new colonic motor pattern identified using high-resolution manometry. Am J Gastroenterol. 2017;112(3):479–89. DOI: 10.1038/ajg.2016.341
15. Bassotti G., de Roberto G., Castellani D., Sediari L., Morelli A. Normal aspects of colorectal motility and abnormalities in slow transit constipation. World J Gastroenterol. 2005;11(18):2691–6. DOI: 10.3748/wjg.v11.i18.2691
16. Rao S.S.C., Sadeghi P., Beaty J., Kavlock R. Ambulatory 24-hour colonic manometry in slow-transit constipation. Am J Gastroenterol. 2004;99(12):2405–16. DOI: 10.1111/j.1572-0241.2004.40453.x
17. Dinning P.G. A new understanding of the physiology and pathophysiology of colonic motility? Neurogastroenterol Motil. 2018;30(11):e13395. DOI: 10.1111/nmo.13395
18. Bharucha A.E. High amplitude propagated contractions. Neurogastroenterol Motil. 2012;24(11):977–82. DOI: 10.1111/nmo.12019
19. Clemens C.H.M., Samsom M., Van Berge Henegouwen G.P., Smout A.J.P.M. Abnormalities of left colonic motility in ambulant nonconstipated patients with irritable bowel syndrome. Dig Dis Sci. 2003;48(1):74–82. DOI: 10.1023/a:1021734414976
20. Xu C., Cong J., Liu T., Jiao C., Li M., Yu Y., et al. The colonic motility and classification of patients with slow transit constipation by high-resolution colonic manometry. Clin Res Hepatol Gastroenterol. 2022;46(9):101998. DOI: 10.1016/j.clinre.2022.101998
21. Deiteren A., Camilleri M., Bharucha A.E., Burton D., McKinzie S., Rao A.S., et al. Performance characteristics of scintigraphic colon transit measurement in health and irritable bowel syndrome and relationship to bowel functions. Neurogastroenterol Motil. 2010;22(4):415–23, e95. DOI: 10.1111/j.1365-2982.2009.01441.x
22. Bouchoucha M., Devroede G., Bon C., Raynaud J.J., Bejou B., Benamouzig R. How many segments are necessary to characterize delayed colonic transit time? Int J Colorectal Dis. 2015;30(10):1381–9. DOI: 10.1007/s00384-015-2277-8
23. Diaz Tartera H.O., Webb D.L., Al-Saffar A.K., Halim M.A., Lindberg G., Sangfelt P., et al. Validation of SmartPill® wireless motility capsule for gastrointestinal transit time: Intra-subject variability, software accuracy and comparison with video capsule endoscopy. Neurogastroenterol Motil. 2017;29(10):1–9. DOI: 10.1111/nmo.13107
24. Steadman C.J., Phillips S.F., Camilleri M., Talley N.J., Haddad A., Hanson R. Control of muscle tone in the human colon. Gut. 1992;33(4):541–6. DOI: 10.1136/gut.33.4.541
25. Bharucha A.E., Hubmayr R.D., Ferber I.J., Zinsmeister A.R. Viscoelastic properties of the human colon. Am J Physiol Gastrointest Liver Physiol. 2001;281(2):G459–66. DOI: 10.1152/ajpgi.2001.281.2.G459
26. Bharucha A.E., Wald A. Chronic constipation. Mayo Clin Proc. 2019;94(11):2340–57. DOI: 10.1016/j.mayocp.2019.01.031
27. Pritchard S.E., Paul J., Major G., Marciani L., Gowland P.A., Spiller R.C., et al. Assessment of motion of colonic contents in the human colon using MRI tagging. Neurogastroenterol Motil. 2017;29(9). DOI: 10.1111/nmo.13091
28. Hussain A., Zhang Z., Yu J., Wei R., Arshad H., Lew J., et al. Haustral rhythmic motor patterns of the human large bowel revealed by ultrasound. Am J Physiol Gastrointest Liver Physiol. 2023;325(4):G295–305. DOI: 10.1152/ajpgi.00068.2023
29. Peihong M., Tao Y., Zhaoxuan H., Sha Y., Li C., Kunnan X., et al. Alterations of white matter network properties in patients with functional constipation. Front Neurol. 2021;12:627130. DOI: 10.3389/fneur.2021.627130
30. Zhu Q., Cai W., Zheng J., Li G., Meng Q., Liu Q., et al. Distinct resting-state brain activity in patients with functional constipation. Neurosci Lett. 2016;632:141–6. DOI: 10.1016/j.neulet.2016.08.042
31. Liu L., Hu C., Hu Y., Zhang W., Zhang Z., Ding Y., et al. Abnormalities in the thalamo-cortical network in patients with functional constipation. Brain Imaging Behav. 2021;15(2):630–42. DOI: 10.1007/s11682-020-00273-y
32. Tamnes C.K., Ostby Y., Fjell A.M., Westlye L.T., Due-Tønnessen P., Walhovd K.B. Brain maturation in adolescence and young adulthood: regional age-related changes in cortical thickness and white matter volume and microstructure. Cereb Cortex. 2010;20(3):534–48. DOI: 10.1093/cercor/bhp118
33. Hu C., Liu L., Liu L., Zhang J., Hu Y., Zhang W., et al. Cortical morphometry alterations in brain regions involved in emotional, motor-control and self-referential processing in patients with functional constipation. Brain Imaging Behav. 2020;14(5):1899–907. DOI: 10.1007/s11682-019-00133-4
34. Jia Z., Li G., Hu Y., Li H., Zhang W., Wang J., et al. Brain structural changes in regions within the salience network in patients with functional constipation. Brain Imaging Behav. 2022;16(4):1741–8. DOI: 10.1007/s11682022-00648-3
35. Yu X., Yu J., Li Y., Cong J., Wang C., Fan R., et al. Aberrant intrinsic functional brain networks in patients with functional constipation. Neuroradiology. 2023;65(2):337– 48. DOI: 10.1007/s00234-022-03064-y
36. Knowles C.H., Scott S.M., Lunniss P.J. Slow transit constipation: A disorder of pelvic autonomic nerves? Dig Dis Sci. 2001;46(2):389–401. DOI: 10.1023/a:1005665218647
37. Dampney R.A., Michelini L.C., Li D.P., Pan H.L. Regulation of sympathetic vasomotor activity by the hypothalamic paraventricular nucleus in normotensive and hypertensive states. Am J Physiol Heart Circ Physiol. 2018;315(5):H1200–14. DOI: 10.1152/ajpheart.00216.2018
38. Jänig W., McLachlan E.M. Organization of lumbar spinal outflow to distal colon and pelvic organs. Physiol Rev. 1987;67(4):1332–404. DOI: 10.1152/physrev.1987.67.4.1332
39. Gillis R.A., Dias Souza J., Hicks K.A., Mangel A.W., Pagani F.D., Hamilton B.L., et al. Inhibitory control of proximal colonic motility by the sympathetic nervous system. Am J Physiol. 1987;253(4 Pt 1):G531–9. DOI: 10.1152/ajpgi.1987.253.4.G531
40. Hellström P.M., Olerup O., Tatemoto K. Neuropeptide Y may mediate effects of sympathetic nerve stimulations on colonic motility and blood flow in the cat. Acta Physiol Scand. 1985;124(4):613–24. DOI: 10.1111/j.17481716.1985.tb00055.x
41. Dorofeeva A.A., Panteleev S.S., Makarov F.N. Involvement of the sacral parasympathetic nucleus in the innervation of the descending colon and rectum in cats. Neurosci Behav Physiol. 2009;39(2):207–10. DOI: 10.1007/s11055-009-9104-z
42. Matsushima Y. Studies on colonic motor correlates of spontaneous defecation in conscious dogs. Nihon Heikatsukin Gakkai Zasshi. 1989;25(4):137–46. (In Japanese). DOI: 10.1540/jsmr1965.25.137
43. Tong W., Tian Y., Yang H., Wang L., Zhao S., Shi H., et al. Expression of transient receptor potential ankyrin 1 correlating to the recovery of colonic transit after pelvic nerve denervation in rats. J Surg Res. 2017;209:206–10. DOI: 10.1016/j.jss.2016.09.057
44. Gribovskaja-Rupp I., Takahashi T., Ridolfi T., Kosinski L., Ludwig K. Upregulation of mucosal 5-HT3 receptors is involved in restoration of colonic transit after pelvic nerve transection. Neurogastroenterol Motil. 2012;24(5):472–8, e218. DOI: 10.1111/j.1365-2982.2012.01890.x
45. Smith A.N., Varma J.S., Binnie N.R., Papachrysostomou M. Disordered colorectal motility in intractable constipation following hysterectomy. Br J Surg. 1990;77(12):1361–5. DOI: 10.1002/bjs.1800771214
46. Park S.K., Myung S.J., Jung K.W., Chun Y.H., Yang D.H., Seo S.Y., et al. Biofeedback therapy for female patients with constipation caused by radical hysterectomy or vaginal delivery. J Gastroenterol Hepatol. 2013;28(7):1133–40. DOI: 10.1111/jgh.12158
47. Andersson P.O., Bloom S.R., Järhult J. Colonic motor and vascular responses to pelvic nerve stimulation and their relation to local peptide release in the cat. J Physiol. 1983;334:293–307. DOI: 10.1113/jphysiol.1983.sp014495
48. Hedlund H., Fasth S., Hultén L., Nordgren S. Studies on the integrated extrinsic nervous control of rectal motility in the cat. Acta Physiol Scand. 1985;124(1):43– 51. DOI: 10.1111/j.1748-1716.1985.tb07630.x
49. Meerschaert K.A., Davis B.M., Smith-Edwards K.M. New insights on extrinsic innervation of the enteric nervous system and non-neuronal cell types that influence colon function. Adv Exp Med Biol. 2022;1383:133–9. DOI: 10.1007/978-3-031-05843-1_13
50. Sharkey K.A., Mawe G.M. The enteric nervous system. Physiol Rev. 2023;103(2):1487–564. DOI: 10.1152/physrev.00018.2022
51. Michel K., Kuch B., Dengler S., Demir I.E., Zeller F., Schemann M. How big is the little brain in the gut? Neuronal numbers in the enteric nervous system of mice, Guinea pig, and human. Neurogastroenterol Motil. 2022;34(12):e14440. DOI: 10.1111/nmo.14440
52. Mazzuoli-Weber G., Schemann M. Mechanosensitivity in the enteric nervous system. Front Cell Neurosci. 2015;9:408. DOI: 10.3389/fncel.2015.00408
53. Sanders K.M., Ward S.M., Koh S.D. Interstitial cells: Regulators of smooth muscle function. Physiol Rev. 2014;94(3):859–907. DOI: 10.1152/physrev.00037.2013
54. Huizinga J.D., Hussain A., Chen J.H. Interstitial cells of Cajal and human colon motility in health and disease. Am J Physiol Gastrointest Liver Physiol. 2021;321(5):G552–75. DOI: 10.1152/ajpgi.00264.2021
55. Kurahashi M., Zheng H., Dwyer L., Ward S.M., Koh S.D., Sanders K.M. A functional role for the ‘fibroblast-like cells’ in gastrointestinal smooth muscles. J Physiol. 2011;589(Pt 3):697–710. DOI: 10.1113/jphysiol.2010.201129
56. Huizinga J.D., Zarate N., Farrugia G. Physiology, injury, and recovery of interstitial cells of Cajal: Basic and clinical science. Gastroenterology. 2009;137(5):1548–56. DOI: 10.1053/j.gastro.2009.09.023
57. He C.L., Burgart L., Wang L., Pemberton J., Young-Fadok T., Szurszewski J., et al. Decreased interstitial cell of Cajal volume in patients with slow-transit constipation. Gastroenterology. 2000;118(1):14–21. DOI: 10.1016/s0016-5085(00)70409-4
58. Xiao J. Aging decreases the density of colonic interstitial cells of Cajal associated with constipation in rats. J Neurogastroenterol Motil. 2018;24(2):326–8. DOI: 10.5056/jnm18016
59. Wang H., Ren B., Pan J., Fu S., Liu C., Sun D. Effect of miR-129-3p on autophagy of interstitial cells of Cajal in slow transit constipation through SCF C-kit signaling pathway. Acta Biochim Pol. 2022;69(3):579–86. DOI: 10.18388/abp.2020_5877
60. Zheng H., Liu Y.J., Chen Z.C., Fan G.Q. miR-222 regulates cell growth, apoptosis, and autophagy of interstitial cells of Cajal isolated from slow transit constipation rats by targeting c-kit. Indian J Gastroenterol. 2021;40(2):198–208. DOI: 10.1007/s12664-020-01143-7
61. Houghton L.A., Atkinson W., Lockhart C., Whorwell P.J., Keevil B. Sigmoid-colonic motility in health and irritable bowel syndrome: A role for 5-hydroxytryptamine. Neurogastroenterol Motil. 2007;19(9):724–31. DOI: 10.1111/j.1365-2982.2007.00943.x
62. Smith T.K., Park K.J., Hennig G.W. Colonic migrating motor complexes, high amplitude propagating contractions, neural reflexes and the importance of neuronal and mucosal serotonin. J Neurogastroenterol Motil. 2014;20(4):423–46. DOI: 10.5056/jnm14092
63. Stanton M.P., Hengel P.T., Southwell B.R., Chow C.W., Keck J., Hutson J.M., et al. Cholinergic transmission to colonic circular muscle of children with slow-transit constipation is unimpaired, but transmission via NK2 receptors is lacking. Neurogastroenterol Motil. 2003;15(6):669–78. DOI: 10.1046/j.1350-1925.2003.00443.x
64. Huang Z., Li S., Foreman R.D., Yin J., Dai N., Chen J.D.Z. Sacral nerve stimulation with appropriate parameters improves constipation in rats by enhancing colon motility mediated via the autonomic-cholinergic mechanisms. Am J Physiol Gastrointest Liver Physiol. 2019;317(5):G609–17. DOI: 10.1152/ajpgi.00150.2018
65. Vannucchi M.G., Corsani L., Faussone-Pellegrini M.S. Substance P immunoreactive nerves and interstitial cells of Cajal in the rat and guinea-pig ileum. A histochemical and quantitative study. Neurosci Lett. 1999;268(1):49–52. DOI: 10.1016/s0304-3940(99)00366-3
66. Jun J.Y., Choi S., Yeum C.H., Chang I.Y., You H.J., Park C.K., et al. Substance P induces inward current and regulates pacemaker currents through tachykinin NK1 receptor in cultured interstitial cells of Cajal of murine small intestine. Eur J Pharmacol. 2004;495(1):35–42. DOI: 10.1016/j.ejphar.2004.05.022
67. Yik Y.I., Farmer P.J., King S.K., Chow C.W., Hutson J.M., Southwell B.R. Gender differences in reduced substance P (SP) in children with slow-transit constipation. Pediatr Surg Int. 2011;27(7):699–704. DOI: 10.1007/s00383-011-2852-1
68. King S.K., Sutcliffe J.R., Ong S.Y., Lee M., Koh T.L., Wong S.Q., et al. Substance P and vasoactive intestinal peptide are reduced in right transverse colon in pediatric slow-transit constipation. Neurogastroenterol Motil. 2010;22(8):883–92, e234. DOI: 10.1111/j.1365-2982.2010.01524.x
69. Parajuli S.P., Choi S., Lee J., Kim Y.D., Park C.G., Kim M.Y., et al. The inhibitory effects of hydrogen sulfide on pacemaker activity of interstitial cells of Cajal from mouse small intestine. Korean J Physiol Pharmacol. 2010;14(2):83–9. DOI: 10.4196/kjpp.2010.14.2.83
70. Martinez-Cutillas M., Gil V., Mañé N., Clavé P., Gallego D., Martin M.T., et al. Potential role of the gaseous mediator hydrogen sulphide (H2S) in inhibition of human colonic contractility. Pharmacol Res. 2015;93:52–63. DOI: 10.1016/j.phrs.2015.01.002
71. L’Heureux M.C., St-Pierre S., Trudel L., Plourde V., Lepage R., Poitras P. Digestive motor effects and vascular actions of CGRP in dog are expressed by different receptor subtypes. Peptides. 2000;21(3):425–30. DOI: 10.1016/s0196-9781(00)00160-1
72. Holzer P., Holzer-Petsche U. Constipation caused by anti-calcitonin gene-related peptide migraine therapeutics explained by antagonism of calcitonin gene-related peptide’s motor-stimulating and prosecretory function in the intestine. Front Physiol. 2022;12:820006. DOI: 10.3389/fphys.2021.820006
73. Gribble F.M., Reimann F. Enteroendocrine cells: Chemosensors in the intestinal epithelium. Annu Rev Physiol. 2016;78:277–99. DOI: 10.1146/annurev-physiol-021115-105439
74. Xu L., Depoortere I., Tomasetto C., Zandecki M., Tang M., Timmermans J.P., et al. Evidence for the presence of motilin, ghrelin, and the motilin and ghrelin receptor in neurons of the myenteric plexus. Regul Pept. 2005;124(1–3):119–25. DOI: 10.1016/j.regpep.2004.07.022
75. Mori H., Verbeure W., Tanemoto R., Sosoranga E.R., Tack J. Physiological functions and potential clinical applications of motilin. Peptides. 2023;160:170905. DOI: 10.1016/j.peptides.2022.170905
76. Ulusoy E., Arslan N., Küme T., Ülgenalp A., Çirali C., Bozkaya Ö., et al. Serum motilin levels and motilin gene polymorphisms in children with functional constipation. Minerva Pediatr (Torino). 2021;73(5):420–5. DOI: 10.23736/S2724-5276.16.04369-X
77. Ahmed M., Ahmed S. Functional, diagnostic and therapeutic aspects of gastrointestinal hormones. Gastroenterology Res. 2019;12(5):233–44. DOI: 10.14740/gr1219
78. Sessenwein J.L., Lomax A.E. Ghrelin receptors as targets for novel motility drugs. Neurogastroenterol Motil. 2015;27(5):589–93. DOI: 10.1111/nmo.12562
79. Czkwianianc E., Kolejwa M., Bossowski A., Wawrusiewicz-Kurylonek N., Glowacka E., Makosiej A., et al. Ghrelin, obestatin and their receptors as well as metabotropic glutamate receptor assessment in chronic functional constipation in children. J Pediatr Gastroenterol Nutr. 2021;73(2):203–9. DOI: 10.1097/MPG.0000000000003124
80. Ko B.S., Han J.H., Jeong J.I., Chae H.B., Park S.M., Youn S.J., et al. Mechanism of action of cholecystokinin on colonic motility in isolated, vascularly perfused rat colon. J Neurogastroenterol Motil. 2011;17(1):73–81. DOI: 10.5056/jnm.2011.17.1.73
81. John E.S., Chokhavatia S. Targeting small bowel receptors to treat constipation and diarrhea. Curr Gastroenterol Rep. 2017;19(7):31. DOI: 10.1007/s11894-017-0573-x
82. Beck K., Voussen B., Reigl A., Vincent A.D., Parsons S.P., Huizinga J.D., et al. Cell-specific effects of nitric oxide on the efficiency and frequency of long distance contractions in murine colon. Neurogastroenterol Motil. 2019;31(6):e13589. DOI: 10.1111/nmo.13589
83. Koch T.R., Carney J.A., Go L., Go V.L. Idiopathic chronic constipation is associated with decreased colonic vasoactive intestinal peptide. Gastroenterology. 1988;94(2):300– 10. DOI: 10.1016/0016-5085(88)90416-7
84. Milner P., Crowe R., Kamm M.A., Lennard-Jones J.E., Burnstock G. Vasoactive intestinal polypeptide levels in sigmoid colon in idiopathic constipation and diverticular disease. Gastroenterology. 1990;99(3):666–75. DOI: 10.1016/0016-5085(90)90953-x
85. Esteban-Zubero E., López-Pingarrón L., Alatorre-Jiménez M.A., Ochoa-Moneo P., Buisac-Ramón C., Rivas-Jiménez M., et al. Melatonin’s role as a co-adjuvant treatment in colonic diseases: A review. Life Sci. 2017;170:72–81. DOI: 10.1016/j.lfs.2016.11.031
86. Zhu L., Liu W., Alkhouri R., Baker R.D., Bard J.E., Quigley E.M., et al. Structural changes in the gut microbiome of constipated patients. Physiol Genomics. 2014;46(18):679–86. DOI: 10.1152/physiolgenomics.00082.2014
87. Mancabelli L., Milani C., Lugli G.A., Turroni F., Mangifesta M., Viappiani A., et al. Unveiling the gut microbiota composition and functionality associated with constipation through metagenomic analyses. Sci Rep. 2017;7(1):9879. DOI: 10.1038/s41598-017-10663-w
88. Ohkusa T., Koido S., Nishikawa Y., Sato N. Gut microbiota and chronic constipation: A review and update. Front Med (Lausanne). 2019;6:19. DOI: 10.3389/fmed.2019.00019
89. Yu T., Ding Y., Qian D., Lin L., Tang Y. Characteristics of fecal microbiota in different constipation subtypes and association with colon physiology, lifestyle factors, and psychological status. Therap Adv Gastroenterol. 2023;16:17562848231154101. DOI: 10.1177/17562848231154101
90. Bunnett N.W. Neuro-humoral signalling by bile acids and the TGR5 receptor in the gastrointestinal tract. J Physiol. 2014;592(14):2943–50. DOI: 10.1113/jphysiol.2014.271155
91. Vikström Bergander L., Cai W., Klocke B., Seifert M., Pongratz I. Tryptamine serves as a proligand of the AhR transcriptional pathway whose activation is dependent of monoamine oxidases. Mol Endocrinol. 2012;26(9):1542– 51. DOI: 10.1210/me.2011-1351
92. Obata Y., Castaño Á., Boeing S., Bon-Frauches A.C., Fung C., Fallesen T., et al. Neuronal programming by microbiota regulates intestinal physiology. Nature. 2020;578(7794):284–9. DOI: 10.1038/s41586-020-1975-8
93. Ye L., Bae M., Cassilly C.D., Jabba S.V., Thorpe D.W., Martin A.M., et al. Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host Microbe. 2021;29(2):179–96.e9. DOI: 10.1016/j.chom.2020.11.011
94. Cherbut C., Ferrier L., Rozé C., Anini Y., Blottière H., Lecannu G., et al. Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the rat. Am J Physiol. 1998;275(6):G1415–22. DOI: 10.1152/ajpgi.1998.275.6.G1415
95. Ghoshal U.C., Srivastava D., Misra A. A randomized double-blind placebo-controlled trial showing rifaximin to improve constipation by reducing methane production and accelerating colon transit: A pilot study. Indian J Gastroenterol. 2018;37(5):416–23. DOI: 10.1007/s12664-018-0901-6
96. Attaluri A., Jackson M., Valestin J., Rao S.S.C. Methanogenic flora is associated with altered colonic transit but not stool characteristics in constipation without IBS. Am J Gastroenterol. 2010;105(6):1407–11. DOI: 10.1038/ajg.2009.655
97. Fedorov I.G., Ilchenko L.Y., Kosyura S.D., Chichkina M.A. Clinical aspects of lactulose use in gastroenterologist practice. Difficult Patient. 2012;4:37–42. (In Russ.)].
98. Lopatkina T.N., Kudlinsky I.S. Lactulose (Duphalac) in the treatment of hepatic encephalopathy in cirrhotic patients. Farmateka. 2012;7:12–7. (In Russ.)].
99. Ruszkowski J., Witkowski J.M. Lactulose: Patient- and dose-dependent prebiotic properties in humans. Anaerobe. 2019;59:100–6. DOI: 10.1016/j.anaerobe.2019.06.002
100. Chu N., Ling J., Jie H., Leung K., Poon E. The potential role of lactulose pharmacotherapy in the treatment and prevention of diabetes. Front Endocrinol (Lausanne). 2022;13:956203. DOI: 10.3389/fendo.2022.956203
101. Karakan T., Tuohy K.M., Janssen-van Solingen G. Lowdose lactulose as a prebiotic for improved gut health and enhanced mineral absorption. Front Nutr. 2021;8:672925. DOI: 10.3389/fnut.2021.672925
102. Tuohy K.M., Ziemer C.J., Klinder A., Knöbel Y., Pool-Zobel B.L., Gibson G.R. A human volunteer study to determine the prebiotic effects of lactulose powder on human colonic microbiota. Microb Ecol Health Dis. 2002;14(3):165–73. DOI: 10.1080/089106002320644357
103. Collins S.L., McMillan A., Seney S., van der Veer C., Kort R., Sumarah M.W., et al. Promising prebiotic candidate established by evaluation of lactitol, lactulose, raffinose, and oligofructose for maintenance of a lactobacillus-dominated vaginal microbiota. Appl Environ Microbiol. 2018;84(5):e02200–17. DOI: 10.1128/AEM.02200-17
Supplementary files
Review
For citations:
Galagudza M.M., Uspensky Yu.P., Fominykh Yu.A., Butko D.Yu. Pathogenesis of Disorders of the Motor Function of the Large Intestine in Functional Constipation. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2024;34(3):24-37. https://doi.org/10.22416/1382-4376-2024-34-3-24-37