Preview

Russian Journal of Gastroenterology, Hepatology, Coloproctology

Advanced search

Electrical and Viscoelastic Parameters of Erythrocytes as a Part of Diagnostic Models for Differentiating Fatty Liver Disease of Mixed Genesis from Non-Alcoholic and Alcohol-Related Fatty Liver Disease

https://doi.org/10.22416/1382-4376-2024-1215-3218

Abstract

Aim: creation of diagnostic models including electrical, viscoelastic parameters of erythrocytes to distinguish fatty liver disease of mixed etiology (metabolic + alcoholic) from non-alcoholic and alcoholic fatty liver disease.

Materials and methods. We examined 46 men with non-alcoholic fatty liver disease (NAFLD), 43 men with alcoholic fatty liver disease (AFLD), as well as 54 men with fatty liver disease (FLD) of mixed genesis (metabolic + alcohol-related); average age of the patients included in the study made 48.4 ± 9.6 years. The diagnosis was established on the basis of liver ultrasound findings and FLI liver steatosis index with a fibrosis grade of F1 or less (FibroScan® 502, Echosens, France). The electrical and viscoelastic parameters of erythrocytes were investigated by the diagnostic technique of dielectrophoresis using an electrooptical cell detection system.

Results. The most significant parameters for differentiating fatty liver disease of mixed genesis (metabolic + alcoholic) from NAFLD using the Volcano plot have turned out to be cell polarizability at a frequency of 106 Hz (p = 6.49 ×10-5), erythrocyte cell membrane capacity (p = 0.00077), relative polarizability (p = 0.001), the levels of which were higher in patients with NAFLD. On the contrary, the index of red blood cells destruction at 105 Hz was higher in FLD of the mixed genesis (p = 0.047) and the crossover frequency was shifted to the high frequency range more than in NAFLD (p = 0.0005). The discriminant analysis has additionally revealed the significance of the degree of erythrocyte deformation at 5 ×105 Hz in distinguishing between mixed-genesis FLD and NAFLD. In differentiating FLD of mixed genesis from NAFLD, a diagnostic model incorporating the above red blood cells parameters has provided an AUC of 0.829 (confidential interval: 0.742–0.916), sensitivity of 80.9 %, and specificity of 83.3 %. Two indicators of red blood cells have been established that statistically significantly distinguish the mixed-genesis FLD from the AFLD (Volcano plot); these are the index of red blood cells destruction at a frequency of 5 ×105 Hz, which was higher with AFLD (p = 0.0007), and the capacity of cell membranes, the value of which prevailed in mixed-genesis FLD (p = 0.011). When distinguishing the mixed-genesis FLD from the AFLD, the combined model with the inclusion of three parameters of red blood cells, namely the index of red blood cells destruction at a frequency of 5 ×105 Hz, the capacity of erythrocyte membranes, and polarizability at a frequency of 106 Hz, has shown the highest levels of diagnostic accuracy, namely AUC = 0.751 (confidential interval: 0.611–0.908) with a sensitivity of 79.5 %, specificity of 74.7 %.

Conclusion. The electrical and viscoelastic parameters of erythrocytes studied using the diagnostic technique of dielectrophoresis should be considered as promising biomarkers for the diagnosis of diffuse liver disease. 

About the Authors

M. V. Kruchinina
Research Institute of Internal and Preventive Medicine — Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Medical University
Russian Federation

Margarita V. Kruchinina* — Dr. Sci. (Med.), Docent;

Leading Researcher, Head of the Gastroenterology Laboratory; Professor of the Department of Propaedeutics of Internal Diseases

630089, Novosibirsk, B. Bogatkova str., 175/1



M. F. Osipenko
Novosibirsk State Medical University
Russian Federation

Marina F. Osipenko — Dr. Sci. (Med.), Professor, Head of the Department of Propaedeutics of Internal Diseases

 



M. V. Parulikova
Research Institute of Internal and Preventive Medicine — Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Marina V. Parulikova — Gastroenterologist, Senior Lecturer at the Department of Education

630089, Novosibirsk, B. Bogatkova str., 175/1



A. A. Gromov
Research Institute of Internal and Preventive Medicine — Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Andrei A. Gromov — Cand. Sci. (Med.), Senior Researcher at the Laboratory of Clinical Biochemical and Hormonal Studies of Therapeutic Diseases, Head of the Thrombosis Prevention Center

630089, Novosibirsk, B. Bogatkova str., 175/1



References

1. Cotter T.G., Rinella M. Nonalcoholic fatty liver disease 2020: The state of the disease. Gastroenterology. 2020;158(7):1851–64. DOI: 10.1053/j.gastro.2020.01.052

2. Paik J.M., Golabi P., Biswas R., Alqahtani S., Venkatesan C., Younossi Z.M. Nonalcoholic fatty liver disease and alcoholic liver disease are major drivers of liver mortality in the United States. Hepatol Commun. 2020;4(6):890–903. DOI: 10.1002/hep4.1510

3. Craciun A., Lackner C., Cortez-Pinto H. Nonalcoholic fatty liver disease versus alcohol-related liver disease: Is it really so different? Curr Pharm Des. 2020;26(10):1093–109. DOI: 10.2174/1381612826666200122152417

4. European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64(6):1388–402. DOI: 10.1016/j.jhep.2015.11.004

5. Eslam M., Sanyal A.J., George J.; International Consensus Panel. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology. 2020;158(7):1999–2014.e1. DOI: 10.1053/j.gastro.2019.11.312

6. Seitz H.K., Mueller S., Hellerbrand C., Liangpunsakul S. Effect of chronic alcohol consumption on the development and progression of non-alcoholic fatty liver disease (NAFLD). Hepatobiliary Surg Nutr. 2015;4(3):147–51. DOI: 10.3978/j.issn.2304-3881.2014.12.01

7. Åberg F., Puukka P., Salomaa V., Männistö S., Lundqvist A., Valsta L., et al. Risks of light and moderate alcohol use in fatty liver disease: Follow-up of population cohorts. Hepatology. 2020;71(3):835–48. DOI: 10.1002/hep.30864

8. Yi S.W., Choi J.S., Yi J.J., Lee Y.H., Han K.J. Risk factors for hepatocellular carcinoma by age, sex, and liver disorder status: A prospective cohort study in Korea. Cancer. 2018;124(13):2748–57. DOI: 10.1002/cncr.31406

9. Idalsoaga F., Kulkarni A.V., Mousa O.Y., Arrese M., Arab J.P. Non-alcoholic fatty liver disease and alcohol-related liver disease: Two intertwined entities. Front Med (Lausanne). 2020;7:448. DOI: 10.3389/fmed.2020.00448

10. Chen Z., Ma Y., Cai J., Sun M., Zeng L., Wu F. et al. Serum biomarkers for liver fibrosis. Clin Chim Acta. 2022;537:16–25. DOI: 10.1016/j.cca.2022.09.022

11. Raikhelson K.L., Maevskaya M.V., Zharkova M.S., Grechishnikova V.R., Okovityi S.V., Deeva T.A., et al. Steatotic liver disease: New nomenclature and its localization in the Russian Federation. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2024;34(2):35–44. (In Russ.)]. DOI: 10.22416/1382-4376-2024-961

12. Kruchinina M.V., Parulikova M.V., Kurilovich S.A., Gromov A.A., Generalov V.M., Kruchinin V.N., et al. Possibilities of the method of dielectrophoresis of erythrocytes in distinction of patients with fatty liver disease of alcoholic and non-alcoholic genesis. Ateroscleroz. 2020;16(4):27–42. (In Russ.)]. DOI: 10.15372/ATER20200404

13. Generalov V.M., Kruchinina M.V., Durymanov A.G., Medvedev A.A., Safatov A.S., Sergeev A.N., et al. Dielectrophoresis in the diagnosis of infectious and non-infectious diseases. Novosibirsk: CERIS Publ., 2011. (In Russ.)].

14. Kruchinina M.V., Parulikova M.V., Gromov A.A., Generalov V.M., Generalov K.V., Kruchinin V.N., et al. Acute effects of ethanol on erythrocytes in vitro: a new approach to differential diagnosis of fatty liver disease. Experimental and clinical gastroenterology. 2019;172(12):122–34. (In Russ.)]. DOI: 10.31146/1682-8658-ecg-172-12-122-134

15. Kruchinina M.V., Osipenko M.F., Parulikova M.V., Belkovets A.V., Kruchinina E.V. Diagnostic models, including electrical, viscoelastic parameters of erythrocytes, for differentiating fatty liver disease of alcoholic and non-alcoholic origin. Russian Medical Inquiry. 2024;8(6): in press. (In Russ.)].

16. Ivashkin V.T., Maevskaya M.V., Zharkova M.S., Kotovskaya Yu.V., Tkacheva O.N., Troshina E.A., et al. Clinical practice guidelines of the Russian Scientific Liver Society, Russian Gastroenterological Association, Russian Association of Endocrinologists, Russian Association of Gerontologists and Geriatricians and National Society for Preventive Cardiology on diagnosis and treatment of non-alcoholic liver disease. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2022;32(4):104–40. (In Russ.)]. DOI: 10.22416/1382-4376-2022-32-4-104-140

17. Khang A.R., Lee H.W., Yi D., Kang Y.H., Son S.M. The fatty liver index, a simple and useful predictor of metabolic syndrome: analysis of the Korea National Health and Nutrition Examination Survey 2010–2011. Diabetes Metab Syndr Obes. 2019;12:181–90. DOI: 10.2147/DMSO.S189544

18. Recommendations of experts of the All-Russian Scientific Society of Cardiologists on the diagnosis and treatment of metabolic syndrome (2nd revision). Practical medicine. 2010;5(44):81–101. (In Russ.)].

19. Kotronen A., Peltonen M., Hakkarainen A., Sevastianova K., Bergholm R., Johansson L.M., et al. Prediction of non-alcoholic fatty liver disease and liver fat using metabolic and genetic factors. Gastroenterology. 2009;137(3):865–72. DOI: 10.1053/j.gastro.2009.06.005

20. Shah A.G., Lydecker A., Murray K., Tetri B.N., Contos M.J., Sanyal A.J.; Nash Clinical Research Network. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2009;7(10):1104–12. DOI: 10.1016/j.cgh.2009.05.033

21. Breiman L. Random forests. Machine Learning. 2001;45:5–32. DOI: 10.1023/A:1010933404324

22. Uslusoy H.S., Nak S.G., Gülten M., Biyikli Z. Non-alcoholic steatohepatitis with normal aminotransferase values. World J Gastroenterol. 2009;15(15):1863–8. DOI: 10.3748/wjg.15.1863

23. Burt A.D., Ferrell L.D., Hübscher S.G. MacSween's pathology of the liver, 8th Edition. Elsevier; 2024.

24. Zhang X., Wong G.L., Wong V.W. Application of transient elastography in nonalcoholic fatty liver disease. Clin Mol Hepatol. 2020;26(2):128–41. DOI: 10.3350/cmh.2019.0001n

25. Osna N.A., Tikhanovich I., Ortega-Ribera M., Mueller S., Zheng C., Mueller J., et al. Alcohol-associated liver disease outcomes: Critical mechanisms of liver injury progression. Biomolecules. 2024;14(4):404. DOI: 10.3390/biom14040404

26. Mueller S. Pathophysiology of alcoholic hepatitis: Emerging role of enhanced red blood cell turnover. In: Mueller S., Heilig M. (eds) Alcohol and alcohol-related diseases. Springer, Cham; 2023:1211–23. DOI: 10.1007/978-3-031-32483-3_64

27. Wang Y., Yang P., Yan Z., Liu Z., Ma Q., Zhang Z., et al. The relationship between erythrocytes and diabetes mellitus. J Diabetes Res. 2021;2021:6656062. DOI: 10.1155/2021/6656062

28. Kruchinina M.V., Gromov A.A., Generalov V.M., Kruchinin V.N. Possible differential diagnosis of the degrees of rheological disturbances in patients with type 2 diabetes mellitus by dielectrophoresis of erythrocytes. J Pers Med. 2020;10(3):60. DOI: 10.3390/jpm10030060

29. Mueller S. Evidence for red blood cell-derived aspartate aminotransferase in heavy drinkers. In: Mueller S., Heilig M. (eds) Alcohol and alcohol-related diseases. Springer, Cham; 2023:785–93. DOI: 10.1007/978-3-031-32483-3_41

30. Kruchinina M.V., Kurilovich S.А., Gromov А.А., Generalov V.М., Kruchinin V.N. Peculiarities of erythrocytic parameters in patients with nonalcoholic steatohepatitis. Journal of Analytical Sciences, Methods and Instrumentation. 2016;6(1):6–14. DOI: 10.4236/jasmi.2016.61002

31. Dimeski G., Mollee P., Carter A. Increased lipid concentration is associated with increased hemolysis. Clin Chem. 2005;51(12):2425. DOI: 10.1373/clinchem.2005.058644

32. Gils C., Hansen D.L., Nybo M., Frederiksen H. Elevated Hemolysis Index is associated with higher risk of cardiovascular diseases. Clin Chem Lab Med. 2023;61(8):1497–505. DOI: 10.1515/cclm-2023-0114

33. Wang Y., Ming J., Guo Z., Zhang W., Li X., Zhou S., et al. Association of serum uric acid with anemia in U.S. adults: A cross-sectional study using secondary data. BMC Cardiovasc Disord. 2023;23(1):291. DOI: 10.1186/s12872-023-03291-y

34. Bertola A., Mathews S., Ki S.H., Wang H., Gao B. Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat Protoc. 2013;8(3):627–37. DOI: 10.1038/nprot.2013.032

35. Mueller S., Chen C., Mueller J., Wang S. Novel Insights into Alcoholic Liver Disease: Iron Overload, Iron Sensing and Hemolysis. J Transl Int Med. 2022;10(2):92-124. DOI: 10.2478/jtim-2021-0056

36. Mueller S., Mueller J. Alcohol and mortality: First preliminary lessons from a prospective 15 year follow-up study In: Mueller S., Heilig M. (eds) Alcohol and alcohol-related diseases. Springer, Cham; 2023:81–102. DOI: 10.1007/978-3-031-32483-3_7

37. Chi L.M., Wu W.G. Mechanism of hemolysis of red blood cell mediated by ethanol. Biochim Biophys Acta. 1991;1062(1):46–50. DOI: 10.1016/0005-2736(91)90333-4

38. Bartel M., Hofmann V., Wang S., Mueller J., Sundermann T.R., Mueller S. Confounders of serum phosphatidylethanol: Role of red blood cell turnover and cirrhosis. Hepat Med. 2023;15:195–208. DOI: 10.2147/HMER.S420732

39. Immenschuh S., Baumgart-Vogt E., Mueller S. Heme oxygenase-1 and iron in liver inflammation: A complex alliance. Curr Drug Targets. 2010;11(12):1541–50. DOI: 10.2174/1389450111009011541

40. Sebastián J.L., Muñoz S., Sancho M., Martínez G., Kaler K.V. Polarizability of red blood cells with an anisotropic membrane. Phys Rev E. 2010;81(2):022901. DOI: 10.1103/PhysRevE.81.022901

41. Generalov K., Generalov V., Safatov A., Durymanov A., Buryak G., Kruchinina M., et al. Nonlinear polarizability of erythrocytes in non-uniform alternating electric field. Open Journal of Biophysics. 2014;4:97–103. DOI: 10.4236/ojbiphy.2014.43011

42. Jovtchev S., Djenev I., Stoeff S., Stoylov S. Role of electrical and mechanical properties of red blood cells for their aggregation. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2000;164(2–3):95–104. DOI: 10.1016/S0927-7757(99)00345-3

43. Ebrahimi S., Bagchi P. A computational study of red blood cell deformability effect on hemodynamic alteration in capillary vessel networks. Sci Rep. 2022;12(1):4304. DOI: 10.1038/s41598-022-08357-z

44. Chen W., Shao S., Cai H., Han J., Guo T., Fu Y., et al. Comparison of erythrocyte membrane lipid profiles between NAFLD patients with or without hyperlipidemia. Int J Endocrinol. 2020;2020:9501826. DOI: 10.1155/2020/9501826

45. Rabai M., Detterich J.A., Wenby R.B., Toth K., Meiselman H.J. Effects of ethanol on red blood cell rheological behavior. Clin Hemorheol Microcirc. 2014;56(2):87–99. DOI: 10.3233/CH-2012-1632

46. Palmieri V.O., Cicco G., Minerva F., Portincasa P., Grattagliano I., Memeo V., et al. Red blood cells (RBC) deformability and aggregability: Alterations in alcoholism. Adv Exp Med Biol. 2006;578:125–31. DOI: 10.1007/0387-29540-2_20

47. Liu L., Huang S., Xu X., Han J. Study of individual erythrocyte deformability susceptibility to INFeD and ethanol using a microfluidic chip. Sci Rep. 2016;6:22929. DOI: 10.1038/srep22929

48. Brun J.F., Varlet-Marie E., Myzia J., Raynaud de Mauverger E., Pretorius E. Metabolic influences modulating erythrocyte deformability and eryptosis. Metabolites. 2021;12(1):4. DOI: 10.3390/metabo12010004

49. Carquin M., D'Auria L., Pollet H., Bongarzone E.R., Tyteca D. Recent progress on lipid lateral heterogeneity in plasma membranes: From rafts to submicrometric domains. Prog Lipid Res. 2016;62:1–24. DOI: 10.1016/j.plipres.2015.12.004

50. Bulle S., Reddy V.D., Padmavathi P., Maturu P., Puvvada P.K., Nallanchakravarthula V. Association between alcohol-induced erythrocyte membrane alterations and hemolysis in chronic alcoholics. J Clin Biochem Nutr. 2017;60(1):63–9. DOI: 10.3164/jcbn.16-16

51. Kruchinina M.V., Osipenko M.F., Parulikova M.V., Kruchinina E.V. Fatty acids of erythrocyte membranes in differentiating patients with fatty liver disease of alcoholic, non-alcoholic and mixed origin. Effective pharmacotherapy. 2023;19(43):28–41. (In Russ.)]. DOI: 10.33978/23073586-2023-19-43-28-41


Review

For citations:


Kruchinina M.V., Osipenko M.F., Parulikova M.V., Gromov A.A. Electrical and Viscoelastic Parameters of Erythrocytes as a Part of Diagnostic Models for Differentiating Fatty Liver Disease of Mixed Genesis from Non-Alcoholic and Alcohol-Related Fatty Liver Disease. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2024;34(3):38-52. https://doi.org/10.22416/1382-4376-2024-1215-3218

Views: 338


ISSN 1382-4376 (Print)
ISSN 2658-6673 (Online)