Preview

Russian Journal of Gastroenterology, Hepatology, Coloproctology

Advanced search

Metabolic and Genetic Determinants of Lipid Metabolism Disruption in Non-Alcoholic Fatty Liver Disease

https://doi.org/10.22416/1382-4376-2020-30-2-15-25

Abstract

Aim. To present literature data on the metabolic and genetic mechanisms of impaired fatty acid (FA) synthesis in the development and progression of non-alcoholic fatty liver disease (NAFLD).

General findings. NAFLD is a widespread disease progressing from steatosis to non-alcoholic steatohepatitis (NASH), increasing the risk of cirrhosis, liver failure and hepatocellular carcinoma. Progression of NAFLD and the development of NASH are closely related to lipid metabolism disorders caused not only by insufficient alimentary intake of fatty acids, but also by a decrease in the efficiency of their endogenous processing. The regulation of fatty acid metabolism involves enzymes desaturase (FADS1, FADS2) and elongase (ELOVL2 and ELOVL5) fatty acids. Desaturases are encoded by the FADS1 and FADS2 genes for fatty acid desaturases. Polymorphisms in the genes of fatty acid desaturases determine the effectiveness of PUFA endogenous processing. Violations in the activity of FADS1 and FADS2 and their genes are accompanied by dysregulation of the metabolic pathway involved in the biosynthesis of fatty acids. This leads to the damage of cell membranes, whose main components are represented by phospholipids. The progression of NAFLD is associated with the powerful toxicity of lipids released in the liver parenchyma upon the loss of the cell biomembrane integrity.

Conclusions. Further research into the NAFLD genetic mechanisms regulating the metabolism of fatty acids appears to be promising for a deeper understanding of the pathogenesis of this multifactorial disease.

About the Authors

O. Yu. Kytikova
Far Eastern Scientific Centre for Physiology and Respiratory Pathology, Vladivostok Branch, Research Institute of Medical Climatology and Reconstructive Treatment
Russian Federation

Oksana Yu. Kytikova — Dr. Sci. (Med.), Researcher, Laboratory for Rehabilitation Treatment

690105, Vladivostok, Russkaya str., 73g.



T. P. Novgorodtseva
Far Eastern Scientific Centre for Physiology and Respiratory Pathology, Vladivostok Branch, Research Institute of Medical Climatology and Reconstructive Treatment
Russian Federation

Tatyana P. Novgorodtseva — Dr. Sci. (Med.), Prof., Deputy Director for Research, Chief Researcher, Laboratory for Biomedical Research,

690105, Vladivostok, Russkaya str., 73g.



Yu. K. Denisenko
Far Eastern Scientific Centre for Physiology and Respiratory Pathology, Vladivostok Branch, Research Institute of Medical Climatology and Reconstructive Treatment
Russian Federation

Yulia K. Denisenko — Dr. Sci. (Biol.), Prof., Laboratory Head, Laboratory for Biomedical Research

690105, Vladivostok, Russkaya str., 73g.



D. A. Kovalevsky
Far Eastern Scientific Centre for Physiology and Respiratory Pathology, Vladivostok Branch, Research Institute of Medical Climatology and Reconstructive Treatment
Russian Federation

Daniil A. Kovalevsky — Postgraduate Student

690105, Vladivostok, Russkaya str., 73g.



References

1. Huang T.D., Behary J., Zekry A. Non-alcoholic fatty liver disease (nafld): a review of epidemiology, risk factors, diagnosis and management. Intern Med J. 2019. DOI: 10.1111/imj.14709

2. Younossi Z.M., Koenig A.B., Abdelatif D., Fazel Y., Henry L., Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84. DOI: 10.1002/hep.28431

3. Younossi Z.M., Loomba R., Rinella M.E., Bugianesi E., Marchesini G., Neuschwander-Tetri B.A., et al. Current and future therapeutic regimens for nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2018;68(1):361–71. DOI: 10.1002/hep.29724

4. Estes C., Razavi H., Loomba R., et al. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology. 2018;67:123–133. DOI: 10.1002/hep.29466

5. Fan J.G., Kim S.U., Wong V.W.S. New trends on obesity and NAFLD in Asia. J. Hepatol. 2017;67:862–873. DOI: 10.1016/j.jhep.2017.06.003

6. van den Berg E.H., Amini M., Schreuder T.C., Dullaart R.P., Faber K.N., Alizadeh B.Z., Blokzijl H. Prevalence and determinants of non-alcoholic fatty liver disease in lifelines: a large Dutch population cohort. PLoS One. 2017;12(2):e0171502. DOI: 10.1371/journal.pone.0171502

7. Stols-Gonçalves D., Hovingh G.K., Nieuwdorp M., Holleboom A.G. NAFLD and atherosclerosis: two sides of the same dysmetabolic coin? Trends endocrinol metab. 2019 Dec;30(12):891–902. DOI: 10.1016/j.tem.2019.08.008

8. Sao R., Aronow W.S. association of non-alcoholic fatty liver disease with cardiovascular disease and subclinical atherosclerosis. Archives of Medical Science. 2018;14(6):1233–1244. DOI: 10.5114/aoms.2017.68821

9. Ballestri S., Nascimbeni F., Baldelli E., Marrazzo A., Romagnoli D., Lonardo A. NAFLD as a sexual dimorphic disease: Role of gender and reproductive status in the development and progression of nonalcoholic fatty liver disease and inherent cardiovascular risk. Adv Ther. 2017;34(6):1291–1326. DOI: 10.1007/s12325-017-0556-1

10. Norheim F., Hui S.T., Kulahcioglu E., Mehrabian M., Cantor R.M., Pan C., et al. Genetic and hormonal control of hepatic steatosis in female and male Mice. J Lipid Res. 2017;58(1):178–187. DOI: 10.1194/jlr.M071522

11. Mencin A.A., Loomba R., Lavine J.E. Caring for children with NAFLD and navigating their care into adulthood. Nat. Rev. Gastroenterol. Hepatol. 2015;12:617–628. DOI: 10.1038/nrgastro.2015.146

12. European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO) Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64(6):1388–1402. DOI: 10.1016/j.jhep.2015.11.004

13. Bril F., Cusi K. Management of non-alcoholic fatty liver disease in patients with type 2 diabetes: A Call To Action. Diabetes Care. 2017;40(3):419–430. DOI: 10.2337/dc16-1787

14. Hannah W.N. Jr., Harrison S.A. Lifestyle and dietary interventions in the management of non-alcoholic fatty liver disease. Dig. Dis. Sci. 2016;61(5):1365–1374. DOI: 10.1007/s10620-016-4153-y

15. Blencowe M., Karunanayake T., Wier J., Hsu N., Yang X. Network modeling approaches and applications to unravelling non-alcoholic fatty liver disease.Genes (Basel). 2019;10(12). PII: E966. DOI: 10.3390/genes10120966

16. Karaman (Denisenko) Yu.K., Novgorodtseva T.P., Zhukova N.V., Yankova V.I. The composition of phospholipids and the activity of the redox system of rat liver glutathione under the conditions of prolonged high-fat load. Russ. J. Physiol. 2012;98(8):1000–1007 (In Russ.)

17. Novgorodtseva T.P., Karaman (Denisenko) Yu.K., Zhukova N.V. Modification of the composition of the fatty acids of polar and neutral blood lipids and liver tissue of rats in a prolonged high-fat diet. Biomeditsinskaya Khimiya. 2013;59(6):644–654 (In Russ.)

18. Lonardo A., Nascimbeni F., Targher G., Bernardi M., Bonino F., Bugianesi E., Bellentani S. Aisf position paper on non-alcoholic fatty liver disease (nafld): updates and future directions. Digest. Liver Dis. 2017;49(5):471– 483. DOI: 10.1016/j.dld.2017.01.147

19. Poeta M., Pierri L., Vajro P. Gut-liver axis derangement in non-alcoholic fatty liver disease. Children. 2017;4(8). 66. DOI: 10.3390/children4080066

20. Vernekar M., Singhal R., Joshi K., Amarapurkar D. Variation in the plasma levels of polyunsaturated fatty acids in control vis-à-vis nonalcoholic fatty liver disease subjects and its possible association with gut microbiome. Metab Syndr Relat Disord. 2018;16(7):329–335. DOI: 10.1089/met.2018.0008

21. Sutti S., Albano E. Adaptive immunity: an emerging player in the progression of NAFLD. Nat Rev Gastroenterol Hepatol. 2019. DOI: 10.1038/s41575-019-0210-2

22. Doulberis M., Kotronis G., Gialamprinou D., Kountouras J., Katsinelos P. Non-alcoholic fatty liver disease: an update with special focus on the role of gut microbiota. Metabolism. 2017;71:182–197. DOI: 10.1016/j.metabol.2017.03.013

23. Saini R.K., Keum Y.S. Omega-3 and omega-6 polyunsaturated fatty acids: dietary sources, metabolism, and significance. A review. Life Sci. 2018;203:255–267. DOI: 10.1016/j.lfs.2018.04.049

24. Kytikova O.Y., Novgorodtseva T.P., Antonyuk M.V., Denisenko Y.K., Gvozdenko Т.A. Pro-resolving lipid mediators in the pathophysiology of asthma. Medicine. 2019;55(6).284. DOI: 10.3390/medicina55060284

25. Arab J.P., Arrese M., Trauner M. Recent insights into the pathogenesis of nonalcoholic fatty liver disease. Annu Rev Pathol. 2018;13:321–350. DOI: 10.1146/annurev-pathol-020117-043617

26. Žák A., Slabý A., Tvrzická E., Jáchymová M., Macášek J., Vecka M., et al. Desaturases of fatty acids (FADS) and their physiological and clinical implication. Cas Lek Cesk. 2016;155(2):15–21.

27. Zhang J.Y., Kothapalli K.S., Brenna J.T. Desaturase and elongase-limiting endogenous long-chain polyunsaturated fatty acid biosynthesis. Curr. Opin. Clin. Nutr. Metab. Care. 2016;19:103–110. DOI: 10.1097/MCO.0000000000000254

28. Castro L.F.C., Tocher D.R., Monroig O. Long-chain polyunsaturated fatty acid biosynthesis in chordates: insights into the evolution of fads and elovl gene repertoire. Prog. Lipid Res. 2016;62:25–40. DOI: 10.1016/j.plipres.2016.01.001

29. Tryndyak V.P., Han T., Fuscoe J.C., Ross S.A., Beland F.A., Pogribny I.P. Status of hepatic DNA methylome predetermines and modulates the severity of nonalcoholic fatty liver injury in mice. BMC Genomics. 2016;17:298. DOI: 10.1186/s12864-016-2617-2

30. Zhukova N.V., Novgorodtseva T.P., Denisenko Yu.K. Effect of the prolonged high-fat diet on the fatty acid metabolism in rat blood and liver. Lipids in health and disease. 2014;13:49. DOI: 10.1186/1476-511X-13-49

31. Jump D.B., Lytle K.A., Depner C.M., Tripathy S. Omega-3 polyunsaturated fatty acids as a treatment strategy for nonalcoholic fatty liver disease. Pharmacol Ther. 2018;181:108–125. DOI: 10.1016/j.pharmthera

32. González-Bengtsson A., Asadi A., Hui Gao, Dahlman-Wright K., Jacobsson A. Estrogen Enhances the Expression of the Polyunsaturated Fatty Acid Elongase Elovl2 via erα in Breast Cancer Cells. РLoS One. 2016;11(10):e0164241. DOI: 10.1371/journal.pone.0164241

33. Brayner B., Kaur G., Keske M.A., Livingstone K.M. FADS Polymorphism, Omega-3 Fatty Acids and Diabetes Risk: A Systematic Review. Nutrients. 2018;10(6). PII: E758. DOI: 10.3390/nu10060758

34. Nobili V., Alisi A., Liu Z., Liang T., Crudele A., Raponi M., et al. In a pilot study, reduced fatty acid desaturase 1 function was associated with nonalcoholic fatty liver disease and response to treatment in children. Pediatr Res. 2018;84(5):696–703. DOI: 10.1038/s41390-018-0132-7

35. Chiappini F., Coilly A., Kadar H., Gual P., Tran A., Desterke C., et al. Metabolism dysregulation induces a specific lipid signature of nonalcoholic steatohepatitis in patients. Sci Rep. 2017;7:46658. DOI: 10.1038/srep46658

36. Lytle K.A., Wong C.P., Jump D.B. Docosahexaenoic acid blocks progression of western diet-induced nonalcoholic steatohepatitis in obese ldlr-/-mice. Plos One. 2017;12(4):e0173376. DOI: 10.1371/journal.pone.0173376

37. Valenzuela R., Echeverria F., Ortiz M., Rincón-Cervera M.Á., Espinosa A., Hernandez-Rodas M.C., et al. Hydroxytyrosol prevents reduction in liver activity of δ-5 and δ-6 desaturases, oxidative stress and depletion in long chain polyunsaturated fatty acid content in different tissues of high-fat diet fed mice. Lipids Health Dis. 2017;16:64. DOI: 10.1186/s12944-017-0450-5

38. Yamada K., Mizukoshi E., Sunagozaka H., Arai K., Yamashita T., Takeshita Y., et al. Characteristics of hepatic fatty acid compositions in patients with nonalcoholic steatohepatitis. Liver Int. 2015;35(2):582–590. DOI: 10.1111/liv.12685

39. Arendt B.M., Comelli E.M., Ma D.W., Lou W., Teterina A., Kim T., et al. Altered hepatic gene expression in nonalcoholic fatty liver disease is associated with lower hepatic n-3 and n-6 polyunsaturated fatty acids. Hepatology. 2015;61(5):1565–1578. DOI: 10.1002/hep.27695

40. Serhan C.N., Levy B.D. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J Clin Invest 2018;128:2657–2669. DOI: 10.1172/JCI97943

41. Eslamparast T., Tandon P., Raman M. Dietary composition independent of weight loss in the management of non-alcoholic fatty liver disease. Nutrients. 2017;9(8). DOI: 10.3390/nu9080800

42. Kytikova O.Y., Perelman J.M., Novgorodtseva T.P., Denisenko Y.K., Kolosov V.P., Antonyuk M.V., Gvozdenko Т.A. Peroxisome proliferator-activated receptors as a therapeutic target in asthma. PPAR Research. 2020;18. DOI: 10.1155/2020/8906968

43. Musa-Veloso K., Venditti C., Lee H.Y., et al. Systematic review and meta-analysis of controlled intervention studies on the effectiveness of long-chain omega-3 fatty acids in patients with nonalcoholic fatty liver disease. Nutr Rev. 2018;76:581–602. DOI: 10.1093/nutrit/nuy022

44. Colussi G., Soardo G., Fagotto V., Sechi L.A. Omega-3 polyunsaturated fatty acids in the treatment of non-alcoholic fatty liver disease: are they so good? J. Metabolic. Synd. 2017;6:e120. DOI: 10.4172/2167-0943.1000e120

45. Chen B., Yan J., Pan X., Li Y., Liu W., Peng X. Casecontrol study of the relationship between dietary fatty acids intake and non-alcoholic fatty liver disease in nanping city, 2015–2017. Wei Sheng Yan Jiu. 2019;48(4):552–559. DOI: 10.1136/bmjopen-2019-028961

46. Okada L.S.D.R.R., Oliveira C.P., Stefano J.T., Nogueira M.A., Silva I.D.C.G.D., Cordeiro F.B., et al. Omega-3 pufa modulate lipogenesis, er stress, and mitochondrial dysfunction markers in nash—proteomic and lipidomic insight. Clin. Nutr. 2018;37:1474–1484. DOI: 10.1016/j.clnu.2017.08.031

47. Scorletti E., Byrne C.D. Omega-3 fatty acids and non-alcoholic fatty liver disease: evidence of efficacy and mechanism of action. Mol Aspects Med. 2018;64:135–146. DOI: 10.1016/j.mam.2018.03.001.

48. Liebig M., Dannenberger D., Vollmar B., Abshagen K. Endogenously increased n-3 pufa levels in fat-1 transgenic mice do not protect from non-alcoholic steatohepatitis. Hepatobiliary surg nutr. 2019;8(5):447–458. DOI: 10.21037/hbsn.2019.04.03

49. Allaire J., Couture P., Leclerc M., Charet A., Marin J., Lepine M.C., et al. A randomized, crossover, head-to-head comparison of eicosapentaenoic acid and docosahexaenoic acid supplementation to reduce inflammation markers in men and women: the comparing epa to dha (compared) study. Am J Clin Nutr. 2016;104:280–287. DOI: 10.3945/ajcn.116.131896

50. Suzuki-Kemuriyama N., Matsuzaka T., Kuba M., Ohno H., Han S.I., Takeuchi Y., et al. Different Effects of Eicosapentaenoic and Docosahexaenoic Acids on Atherogenic High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice. PLoS ONE. 2016;11:e0157580. DOI: 10.1371/journal.pone.0157580

51. Boyraz M., Pirgon O., Dundar B., Cekmez F., Hatipoglu N. Long-term treatment with n-3 polyunsaturated fatty acids as a monotherapy in chicken with nonalcoholic fatty liver disease. J Clin Res Pediatr Endocrinol. 2015;7:121–127. DOI: 10.4274/jcrpe.1749

52. Wang J.Z., Cao H.X., Chen J.N., Pan Q. PNPLA3 rs738409 underlies treatment response in nonalcoholic fatty liver disease. World J. Clin. Cases. 2018;6:167–175. DOI: 10.12998/wjcc.v6.i8.167

53. Fouret G., Tolika E., Lecomte J., Bonafos B., Aoun M., Murphy M.P., et al. The mitochondrial-targeted antioxidant, mitoq, increases liver mitochondrial cardiolipin content in obesogenic diet-fed rats. Biochim. Biophys. Acta. 2015;1847:1025–1035. DOI: 10.1016/j.bbabio.2015.05.019

54. Araya J., Rodrigo R., Pettinelli P., Araya A.V., Poniachik J., Videla L.A. Decreased liver fatty acid delta-6 and delta-5 desaturase activity in obese patients. Obesity (Silver Spring) 2010;18:1460–1463. DOI: 10.1038/oby.2009.379

55. Park H., Hasegawa G., Shima T., et al. The fatty acid composition of plasma cholesteryl esters and estimated desaturase activities in patients with nonalcoholic fatty liver disease and the effect of long-term ezetimibe therapy on these levels. Clinica Chimica Acta. 2010;411(21–22):1735–1740. DOI: 10.1016/j.cca.2010.07.012

56. Wang L., Athinarayanan S., Jiang G., Chalasani N., Zhang M., Liu W. Fatty acid desaturase 1 gene polymorphisms control human hepatic lipid composition. Hepatology. 2015;61(1):119–128. DOI: 10.1002/hep.27373

57. Xu Y., Zhao Z., Liu S., Xiao Y., Miao M., Dong Q., Xin Y. Association of Nonalcoholic Fatty Liver Disease and Coronary Artery Disease with FADS2 rs3834458 Gene Polymorphism in the Chinese Han Population. Gastroenterol Res Pract. 2019;2019:6069870. DOI: 10.1155/2019/6069870

58. Yary T., Voutilainen S., Tuomainen T.P., Ruusunen A., Nurmi T., Virtanen J.K. Serum n-6 polyunsaturated fatty acids, delta5- and delta6-desaturase activities, and risk of incident type 2 diabetes in men: the kuopio ischaemic heart disease risk factor study. Am. J. Clin. Nutr. 2016;103:1337–1343. DOI: 10.3945/ajcn.115.128629

59. Trico D. Oxidized derivatives of linoleic acid in pediatric metabolic syndrome: is their pathogenic role modulated by the genetic background and the gut microbiota? Antioxid. Redox Signal. 2017. DOI: 10.1089/ars.2017.7049

60. Del Gobbo L.C., Imamura F., Aslibekyan S., Marklund M., Virtanen J.K., Wennberg M., et al. Omega-3 polyunsaturated fatty acid biomarkers and coronary heart disease: pooling project of 19 cohort studies. JAMA Intern. Med. 2016;176:1155–1166. DOI: 10.1001/jamainternmed.2016.2925

61. Dorajoo R., Sun Y., Han Y., Ke T., Burger A., Chang X., et al. A genome-wide association study of n-3 and n-6 plasma fatty acids in a Singaporean Chinese population. Genes Nutr. 2015;10(6):53. DOI: 10.1007/s12263-015-0502-2

62. Hermant X., Delay C., Flaig A., Luque-Bedregal J., Briand G., Bout M.A. Identification of a functional FADS1 3’UTR variant associated with erythrocyte n-6 polyunsaturated fatty acids levels. J Clin Lipidol. 2018;12(5):1280–1289. DOI: 10.1016/j.jacl.2018.07.012

63. Dumont J., Goumidi L., Grenier-Boley B., Cottel D., Marécaux N., Montaye M., et al. Dietary linoleic acid interacts with FADS1 genetic variability to modulate HDL-cholesterol and obesity-related traits. Clin Nutr. 2018;37(5):1683–1689. DOI: 10.1016/j.clnu.2017.07.012

64. Vallée Marcotte B., Guénard F., Lemieux S., Couture P., Rudkowska I., Calder P.C., et al. Fine mapping of genome-wide association study signals to identify genetic markers of the plasma triglyceride response to an omega-3 fatty acid supplementation. Am J Clin Nutr. 2019;109(1):176–185. DOI: 10.1093/ajcn/nqy298

65. Rudkowska I., Paradis A.M., Thifault E., Julien P., Barbier O., Couture P., et al. Differences in metabolomic and transcriptomic profiles between responders and nonresponders to an n–3 polyunsaturated fatty acids (PUFAs) supplementation. Genes Nutr. 2013;8:411–423. DOI: 10.1007/s12263-012-0328-0

66. Franck M., de Toro-Martín J., Guénard F., Rudkowska I., Lemieux S., Lamarche B., et al. Prevention of Potential Adverse Metabolic Effects of a Supplementation with Omega-3 Fatty Acids Using a Genetic Score Approach. Lifestyle Genom. 2019:1–11. DOI: 10.1159/000504022

67. Nobili V., Alkhouri N., Alisi A., et al. Nonalcoholic fatty liver disease: a challenge for pediatricians. JAMA Pediatr. 2015;169:170–176. DOI: 10.1001/jamapediatrics.2014.2702

68. Dasarathy S., Dasarathy J., Khiyami. Double-blind randomized placebocontrolled clinical trial of omega 3 fatty acids for the treatment of diabetic patients with nonalcoholic steatohepatitis. J. Clin. Gastroenterol. 2015;49:137–144. DOI: 10.1097/MCG.0000000000000099

69. Roke K., Mutch D.M.The role of FADS1/2 polymorphisms on cardiometabolic markers and fatty acid profiles in young adults consuming fish oil supplements. Nutrients. 2014;6:2290–2304. DOI: 10.3390/nu6062290

70. Walle P., Takkunen M., Mannisto V., Vaittinen M., Lankinen M., Karja V., et al. Fatty acid metabolism is altered in non-alcoholic steatohepatitis independent of obesity. Metabolism. 2016;65(5):655–666. DOI: 10.1016/j.metabol.2016.01.011

71. Lankinen M.A., Fauland A., Shimizu B.I., Ågren J., Wheelock C.E., Laakso M., et al. Inflammatory response to dietary linoleic acid depends on FADS1 genotype. Am J Clin Nutr. 2019;109(1):165–175. DOI: 10.1093/ajcn/nqy287

72. Mwinyi J., Bostrom A.E., Pisanu C., Murphy S.K., Erhart W., Schafmayer C., et al. NAFLD is associated with methylation shifts with relevance for the expression of genes involved in lipoprotein particle composition. Biochim Biophys Acta. 2017;1862(3):314–323. doi: 10.1016/j.bbalip.2016.12.005.

73. Lee J., Kim Y., Friso S., Choi S.W. Epigenetics in nonalcoholic fatty liver disease. Mol Asp Med. 2017;54:78–88. DOI: 10.1016/j.mam.2016.11.008

74. Volkov P., Olsson A.H., Gillberg L., Jorgensen S.W., Brons C., Eriksson K.F., et al. A genome-wide mQTL analysis in human adipose tissue identifies genetic variants associated with DNA methylation, Gene Expression And Metabolic Traits. PLoS One. 2016;11(6):e0157776. DOI: 10.1371/journal.pone.0157776

75. Perfilyev A., Dahlman I., Gillberg L., Rosqvist F., Iggman D., Volkov P., et al. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. Am J Clin Nutr. 2017;105(4):991–1000. DOI: 10.3945/ajcn.116.143164

76. Vaittinen M., Walle P., Kuosmanen E., Mannisto V., Kakela P., Agren J., et al. FADS2 genotype regulates delta-6 desaturase activity and inflammation in human adipose tissue. J Lipid Res. 2016;57(1):56–65. DOI: 10.1194/jlr.M059113

77. Gillberg L., Perfilyev A., Brons C., Thomasen M., Grunnet L.G., Volkov P., et al. Adipose tissue transcriptomics and epigenomics in low birthweight men and controls: role of high-fat overfeeding. Diabetologia. 2016;59(4):799–812. DOI: 10.1007/s00125-015-3852-9

78. Nilsson E., Matte A., Perfilyev A., de Mello V.D., Kakela P., Pihlajamaki J., Ling C. Epigenetic alterations in human liver from subjects with type 2 diabetes in parallel with reduced folate levels. J Clin Endocrinol Metab. 2015;100(11):E1491–E1501. DOI: 10.1210/jc.2015-3204

79. Walle P., Mannisto V., Derenji de Mello V., Vaittinen M., Perfilyev А. Liver DNA methylation of FADS2 associates with FADS2 genotypex. Clin Epigenetics. 2019;11(1):10. DOI: 10.1186/s13148-019-0609-1

80. Rahbar E., Ainsworth H.C., Howard T.D., Hawkins G.A., Ruczinski I., Mathias R., et al. Uncovering the DNA methylation landscape in key regulatory regions within the FADS cluster. PLoS One. 2017;12(9):e0180903. DOI: 10.1371/journal.pone.0180903

81. Howard T.D., Mathias R.A., Seeds M.C., Herrington D.M., Hixson J.E., Shimmin L.C., et al. DNA methylation in an enhancer region of the FADS cluster is associated with FADS activity in human liver. PLoS One. 2014;9(5):e97510. DOI: 10.1371/journal.pone.0097510


Review

For citations:


Kytikova O.Yu., Novgorodtseva T.P., Denisenko Yu.K., Kovalevsky D.A. Metabolic and Genetic Determinants of Lipid Metabolism Disruption in Non-Alcoholic Fatty Liver Disease. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2020;30(2):15-25. (In Russ.) https://doi.org/10.22416/1382-4376-2020-30-2-15-25

Views: 2070


ISSN 1382-4376 (Print)
ISSN 2658-6673 (Online)