Preview

Российский журнал гастроэнтерологии, гепатологии, колопроктологии

Расширенный поиск

Роль кишечной микробиоты и ее метаболитов в патогенезе неалкогольной жировой болезни печени

https://doi.org/10.22416/1382-4376-2022-32-5-75-88

Аннотация

Цель обзора: представить информацию о результатах последних научных исследований в области метаболомного профилирования при неалкогольной жировой болезни печени (НАЖБП).

Основные положения. Метаболиты микробного происхождения являются важными биологическими молекулами, участвующими во многих специфических реакциях организма человека. В данном обзоре литературы представлены результаты последних исследований в области метаболомики у пациентов с НАЖБП. Более детальное понимание роли отдельно взятых метаболитов или же их совокупности в патогенезе НАЖБП позволит определить вектор дальнейших диагностических и терапевтических подходов для этой нозологии.

Обсуждаются результаты исследований влияния пробиотиков на уровень тех или иных метаболитов.

Заключение. Представлены новые данные исследований в области изучения метаболомного профиля человека. Результаты позволяют суммировать эффекты микробных агентов и их метаболитов в процессе формирования изменений паренхимы печени в рамках НАЖБП. Описаны изменения уровня эндогенного этанола, вторичных желчных кислот, ароматических аминокислот, аминокислот с разветвленной цепью и пр. Выявлена корреляция метаболитов с определенными штаммами бактерий. На фоне приема пробиотиков отмечена корреляция соотношения типов бактерий и клинико-лабораторных показателей у пациентов.

Об авторах

М. С. Решетова
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» (Сеченовский Университет) Министерства здравоохранения Российской Федерации

Решетова Мария Сергеевна — аспирант кафедры пропедевтики внутренних болезней, гастроэнтерологии и гепатологии лечебного факультета

119435, г. Москва, ул. Погодинская, д. 1, стр. 1



О. Ю. Зольникова
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» (Сеченовский Университет) Министерства здравоохранения Российской Федерации

Зольникова Оксана Юрьевна — доктор медицинских наук, доцент кафедры пропедевтики внутренних болезней, гастроэнтерологии и гепатологии лечебного факультета

119435, г. Москва, ул. Погодинская, д. 1, стр. 1



В. Т. Ивашкин
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» (Сеченовский Университет) Министерства здравоохранения Российской Федерации

Ивашкин Владимир Трофимович — доктор медицинских наук, профессор, академик РАН, заведующий кафедрой пропедевтики внутренних болезней, гастроэнтерологии и гепатологии лечебного факультета

119435, г. Москва, ул. Погодинская, д. 1, стр. 1



К. В. Ивашкин
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» (Сеченовский Университет) Министерства здравоохранения Российской Федерации

Ивашкин Константин Владимирович — кандидат медицинских наук, доцент кафедры пропедевтики внутренних болезней, гастроэнтерологии и гепатологии лечебного факультета

119435, г. Москва, ул. Погодинская, д. 1, стр. 1



С. А. Апполонова
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» (Сеченовский Университет) Министерства здравоохранения Российской Федерации

Апполонова Светлана Александровна — кандидат химических наук, доцент кафедры фармакологии Института фармации им. А.П. Нелюбина ; заведующая лабораторией фармакокинетики и метаболомного анализа Института трансляционной медицины и биотехнологии 

119435, г. Москва, ул. Погодинская, д. 1, стр. 1



Т. Л. Лапина
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» (Сеченовский Университет) Министерства здравоохранения Российской Федерации

Лапина Татьяна Львовна — кандидат медицинских наук, доцент кафедры пропедевтики внутренних болезней, гастроэнтерологии и гепатологии лечебного факультета

119435, г. Москва, ул. Погодинская, д. 1, стр. 1



Список литературы

1. Krautkramer KA, Fan J, Bäckhed F. Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol. 2021;19(2):77-94. doi: 10.1038/s41579-020-0438-4.

2. Behary J, Amorim N, Jiang XT, Raposo A, Gong L, McGovern E, Ibrahim R, Chu F, Stephens C, Jebeili H, Fragomeli V, Koay YC, Jackson M, O'Sullivan J, Weltman M, McCaughan G, El-Omar E, Zekry A. Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma. Nat Commun. 2021;12(1):187. doi: 10.1038/s41467-020-20422-7.

3. Zubeldia-Varela E, Barber D, Barbas C, Perez-Gordo M, Rojo D. Sample pre-treatment procedures for the omics analysis of human gut microbiota: Turning points, tips and tricks for gene sequencing and metabolomics. J Pharm Biomed Anal. 2020;191:113592. doi: 10.1016/j.jpba.2020.113592

4. Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19(1):55-71. doi: 10.1038/s41579-020-0433-9.

5. Czajkowska A, Kaźmierczak-Siedlecka K, Jamioł-Milc D, Gutowska I, Skonieczna-Żydecka K. Gut microbiota and its metabolic potential. Eur Rev Med Pharmacol Sci. 2020;24(24):12971-12977. doi: 10.26355/eurrev_202012_24201.

6. Bar N, Korem T, Weissbrod O, Zeevi D, Rothschild D, Leviatan S, Kosower N, Lotan-Pompan M, Weinberger A, Le Roy CI, Menni C, Visconti A, Falchi M, Spector TD; IMI DIRECT consortium, Adamski J, Franks PW, Pedersen O, Segal E. A reference map of potential determinants for the human serum metabolome. Nature. 2020;588(7836):135-140. doi: 10.1038/s41586-020-2896-2.

7. Keller C, Wei P, Wancewicz B, Cross TL, Rey FE, Li L. Extraction optimization for combined metabolomics, peptidomics, and proteomics analysis of gut microbiota samples. J Mass Spectrom. 2021;56(4):e4625. doi: 10.1002/jms.4625.

8. Liu R., Yang Z. Single cell metabolomics using mass spectrometry: Techniques and data analysis. Anal Chim Acta. 2021;1143:124-134. doi: 10.1016/j.aca.2020.11.020

9. Ivashkin V., Zolnikova O., Potskherashvili N., Trukhmanov A., Kokina N., Dzhakhaya N. A correction of a gut microflora composition for the allergic bronchial asthma complex therapy. Italian Journal of Medicine 2018; 12:260-264 doi:10.4081/itjm.2018.1040

10. Tanes C, Bittinger K, Gao Y, Friedman ES, Nessel L, Paladhi UR, Chau L, Panfen E, Fischbach MA, Braun J, Xavier RJ, Clish CB, Li H, Bushman FD, Lewis JD, Wu GD Role of dietary fiber in the recovery of the human gut microbiome and its metabolome. Cell Host Microbe. 2021;29(3):394-407.e5. doi: 10.1016/j.chom.2020.12.012

11. Mouzaki M., Comelli E. M., Arendt B. M., Bonengel J., Fung S. K. et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease Hepatology. 2013; 58: 120–127. doi: 10.1002/hep.26319

12. Zhu L., Baker S.S., Gill C., et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology. 2013;57(2):601–9. doi: 10.1002/hep.26093

13. Michail S., Lin M., Frey M.R., et al. Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease. FEMS Microbiol Ecol. 2015;91(2):1–9. doi: 10.1093/femsec/fiu002

14. Boursier J., Mueller O., Barret M., et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2016;63(3):764–75 doi: 10.1002/hep.28356

15. Byrne C.D., Targher G. What's new in NAFLD pathogenesis, biomarkers and treatment? Nat Rev Gastroenterol Hepatol. 2020 Feb;17(2):70-71. doi: 10.1038/s41575-019-0239-2

16. Marra F, Svegliati-Baroni G. Lipotoxity and the gut-liver axis in NASH pathogenesis. J Hepatol. 2018 Feb;68(2):280-295. doi: 10.1016/j.jhep.2017.11.014

17. Campisano S, La Colla A, Echarte SM, Chisari AN. Interplay between early-life malnutrition, epigenetic modulation of the immune function and liver diseases. Nutr Res Rev. 2019 Jun;32(1):128-145. doi: 10.1017/S0954422418000239

18. Kim SY, Jeong JM, Kim SJ, Seo W, Kim MH, Choi WM, Yoo W, Lee JH, Shim YR, Yi HS, Lee YS, Eun HS, Lee BS, Chun K, Kang SJ, Kim SC, Gao B, Kunos G, Kim HM, Jeong WI. Pro-inflammatory hepatic macrophages generate ROS through NADPH oxidase 2 via endocytosis of monomeric TLR4-MD2 complex. Nat Commun. 2017;8(1):2247. doi: 10.1038/s41467-017-02325-2

19. Wang Q, Ou Y, Hu G, Wen C, Yue S, Chen C, Xu L, Xie J, Dai H, Xiao H, Zhang Y, Qi R. Naringenin attenuates non-alcoholic fatty liver disease by down-regulating the NLRP3/NF-kappaB pathway in mice. Br J Pharmacol. 2020;177(8):1806-1821. doi: 10.1111/bph.14938

20. Kanda T, Goto T, Hirotsu Y, Masuzaki R, Moriyama M, Omata M. Molecular Mechanisms: Connections between Nonalcoholic Fatty Liver Disease, Steatohepatitis and Hepatocellular Carcinoma. Int J Mol Sci. 2020 23;21(4):1525. doi: 10.3390/ijms21041525.

21. Fitriakusumah Y, Lesmana CRA, Bastian WP, Jasirwan COM, Hasan I, Simadibrata M, Kurniawan J, Sulaiman AS, Gani RA. The role of Small Intestinal Bacterial Overgrowth (SIBO) in Non-alcoholic Fatty Liver Disease (NAFLD) patients evaluated using Controlled Attenuation Parameter (CAP) Transient Elastography (TE): a tertiary referral center experience. BMC Gastroenterol. 2019;19(1):43. doi: 10.1186/s12876-019-0960-x.

22. Augustyn M, Grys I, Kukla M. Small intestinal bacterial overgrowth and nonalcoholic fatty liver disease. Clin Exp Hepatol. 2019;5(1):1-10. doi: 10.5114/ceh.2019.83151.

23. Mikolasevic I, Delija B, Mijic A, Stevanovic T, Skenderevic N, Sosa I, Krznaric-Zrnic I, Abram M, Krznaric Z, Domislovic V, Filipec Kanizaj T, Radic-Kristo D, Cubranic A, Grubesic A, Nakov R, Skrobonja I, Stimac D, Hauser G. Small intestinal bacterial overgrowth and non-alcoholic fatty liver disease diagnosed by transient elastography and liver biopsy. Int J Clin Pract. 2021;75(4):e13947. doi: 10.1111/ijcp.13947

24. Fialho A, Fialho A, Thota P, et al. Small intestinal bacterial overgrowth is associated with nonalcoholic fatty liver disease. J Gastrointestin Liver Dis. 2016;25:159–165 doi: 10.15403/jgld.2014.1121.252.iwg

25. Graves JP, Bradbury JA, Gruzdev A, Li H, Duval C, Lih FB, Edin ML, Zeldin DC. Expression of Cyp2c/Cyp2j subfamily members and oxylipin levels during LPS-induced inflammation and resolution in mice. FASEB J. 2019;33(12):14784-14797. doi: 10.1096/fj.201901872R

26. Moreto F, Ferron AJT, Francisqueti-Ferron FV, D'Amato A, Garcia JL, Costa MR, Silva CCVA, Altomare A, Correa CR, Aldini G, Ferreira ALA. Differentially expressed proteins obtained by label-free quantitative proteomic analysis reveal affected biological processes and functions in Western diet-induced steatohepatitis. J Biochem Mol Toxicol. 2021;35(6):1-11. doi: 10.1002/jbt.22751

27. Wigg AJ, Roberts-Thomson IC, Dymock RB, et al. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut. 2001; 48: 206–211doi: 10.1136/gut.48.2.206].

28. Basaranoglu M, Kayacetin S, Yilmaz N, Kayacetin E, Tarcin O, Sonsuz A Understanding mechanisms of the pathogenesis of nonalcoholic fatty liver disease World J Gastroenterol. 2010;16(18):2223-6. doi: 10.3748/wjg.v16.i18.2223

29. Bäckhed F., Din G, Wang T, Hooper L, Koh G, Nagy A, Semenkovich C, Gordon J . The gut micro-biota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 2004; 44: 15718-15723 doi: 10.1073/pnas.0407076101

30. Spooner MH, Jump DB. Omega-3 fatty acids and nonalcoholic fatty liver disease in adults and children: where do we stand? Curr Opin Clin Nutr Metab Care. 2019;22(2):103-110. doi: 10.1097/MCO.0000000000000539

31. Kytikova O.Yu., Novgorodtseva T.P., Denisenko Yu.K, Kovalevsky D.A. Metabolic and Genetic Determinants of Lipid Metabolism Disruption in Non-Alcoholic Fatty Liver Disease. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2020;30(2):15–25. https://doi.org/10.22416/1382-4376-2020-30-2-15-25.

32. Arendt B.M., Comelli E.M., Ma D.W., Lou W., Teterina A., Kim T., et al. Altered hepatic gene expression in nonalcoholic fatty liver disease is associated with lower hepatic n-3 and n-6 polyunsaturated fatty acids. Hepatology. 2015;61(5):1565–1578. doi: 10.1002/hep.27695

33. Okada LSDRR, Oliveira CP, Stefano JT, Nogueira MA, Silva IDCGD, Cordeiro FB, Alves VAF, Torrinhas RS, Carrilho FJ, Puri P, Waitzberg DL. Omega-3 PUFA modulate lipogenesis, ER stress, and mitochondrial dysfunction markers in NASH - Proteomic and lipidomic insight. Clin Nutr. 2018;37(5):1474-1484. doi: 10.1016/j.clnu.2017.08.031

34. Khadge S, Sharp JG, Thiele GM, McGuire TR, Klassen LW, Duryee MJ, Britton HC, Dafferner AJ, Beck J, Black PN, DiRusso CC, Talmadge J. Dietary omega-3 and omega-6 polyunsaturated fatty acids modulate hepatic pathology. J Nutr Biochem. 2018;52:92-102. doi: 10.1016/j.jnutbio.2017.09.017

35. Kytikova O.Y., Novgorodtseva T.P., Antonyuk M.V., Denisenko Y.K., Gvozdenko Т.A. Pro-resolving lipid mediators in the pathophysiology of asthma. Medicine. 2019;55(6):284. doi: 10.3390/medicina55060284

36. Basaranoglu M, Kayacetin S, Yilmaz N, Kayacetin E, Tarcin O, Sonsuz A Understanding mechanisms of the pathogenesis of nonalcoholic fatty liver disease World J Gastroenterol. 2010;16(18):2223-6. doi: 10.3748/wjg.v16.i18.2223

37. Membrez M, Blancher F, Jaquet M, Bibiloni R, Cani PD, Bur-. celin RG, Corthesy I, Mace K, Chou CJ Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice FASEB J. 2008 Jul;22(7):2416-26. doi: 10.1096/fj.07-102723

38. Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites Cell 165(6):1332-1345. doi: 10.1016/j.cell.2016.05.041

39. Xiao S, Jiang S, Qian D, Duan J. Modulation of microbially derived short-chain fatty acids on intestinal homeostasis, metabolism, and neuropsychiatric disorder.Appl Microbiol Biotechnol. 2020;104(2):589-601. doi: 10.1007/s00253-019-10312-4

40. Brown R. L., Clarke T. B. The regulation of host defences to infection by the microbiota. Immunology. 2017;150:1 – 6. doi: 10.1111/imm.12634

41. Soderholm AT, Pedicord VA. Intestinal epithelial cells: at the interface of the microbiota and mucosal immunity. Immunology. 2019;158(4):267-280. doi: 10.1111/imm.13117

42. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. Adv The role of short-chain fatty acids in health and disease. Immunol. 2014;121:91-119. doi: 10.1016/B978-0-12-800100-4.00003-9

43. Li M., van Escha B., Wagenaarc G., Garssena J., Folkertsa G. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. European Journal of Pharmacology. 2018;831:52–59 doi: 10.1016/j.ejphar.2018.05.003

44. Al-Lahham S., Roelofsen H., Priebe M., Weening D., Dijkstra M., Hoek A., Rezaee F., Venema K., Vonk R. Regulation of adipokine production in human adipose tissue by propionic acid. Eur. J. Clin. Invest.2010; 40: 401–407 doi: 10.1111/j.1365-2362.2010.02278.x

45. Brown A. J., Goldsworthy S., Barnes A., Eilert M., Tcheang L., Daniels D, Muir A., Wigglesworth M.,et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem.2003; 278: 11312–11319 doi: 10.1074/jbc.M211609200

46. Le Poul E., Loison C., Struyf S., Springael J., Lannoy V., Decobecq M., Brezillon S., Dupriez V.,et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem.2003; 278: 25481–25489 doi: 10.1074/jbc.M301403200

47. Ivashkin V., Zolnikova O., Potskherashvili N., Trukhmanov A., Kokina N., Dzhakhaya N., Sedova A., Bueverova E. A metabolic activity of the intestinal microflora in patients with bronchial asthma. Clinics and Practice 2019; 9:1126 doi:10.4081/cp.2019.1126

48. Fukuda S., Toh H., Hase K., Oshima K., Nakanishi Y., Yoshimura K. Bifi dobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011; 469: 543–7.doi: 10.1038/nature09646

49. Jung T.H., Park J.H., Jeon W.M., Han K.S. Butyrate modulates bacterial adherence on LS174T human colorectal cells by stimulating mucin secretion and MAPK signaling pathway. Nutr Res Pract. 2015; 9: 343–9. doi: 10.4162/nrp.2015.9.4.343

50. Jiminez J.A., Uwiera T.C., Abbott D.W., Uwiera R.R.E., Inglis G.D. Butyrate supplementation at high concentrations alters enteric bacterial communities and reduces intestinal infl ammation in mice infected with citrobacterrodentium. mSphere. 2017;2:e00243-17. doi: 10.1128/mSphere.00243-17

51. Zeng H., Chi H. Metabolic control of regulatory T cell development and function. Trends Immunol. 2015; 36: 3–12. doi: 10.1016/j.it.2014.08.003

52. Turnbaugh P. J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006;444(7122): 1027–1031 doi: 10.1038/nature05414

53. Mariat D, Firmesse O, Levenez F, Guimarăes VD, Sokol H, Doré J, Corthier G, Furet J-P The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age BMC Microbiology 2009;9:123 doi:10.1186/1471-2180-9-123

54. Murphy E., Cotter P D, Healy S, Marques T M, O'Sullivan O, Fouhy F, Clarke S F, et al. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut 2010;59 (12): 1635–1642 doi: 10.1136/gut.2010.215665

55. Fei N., Zhao L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J. 2013;7:880–884. doi: 10.1038/ismej.2012.153

56. Besten G., Den Eunen K., Van Groen A.K., Venema K., Reijngoud D., Bakker B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid. Res. 2013; 54: 2325–2340. doi:10.1194/jlr.R036012

57. Wu C, Lyu W, Hong Q, Zhang X, Yang H, Xiao Y. Gut Microbiota Influence Lipid Metabolism of Skeletal Muscle in Pigs. Front Nutr. 2021;8:675445 doi: 10.3389/fnut.2021.675445

58. Gao Z., Yin J., Zhang J., Ward R., Martin R., Lefevre M., Cefalu W., Ye J. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009;58:1509–1517 doi: 10.2337/db08-1637

59. den Besten G., Bleeker A, Gerding A., van Eunen K., Havinga R., van Dijk T., Oosterveer M., Jonker J. et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes 2015; 64; 2398–2408 doi:10.2337/db14-1213

60. Shimizu H., Masujima Y., Ushiroda C., Mizushima R., Taira S., Ohue-Kitano R., Kimura I. Dietary short-chain fatty acid intake improves the hepatic metabolic condition via FFAR3. Sci. Rep. 2019, 9, 16574. doi: 10.1038/s41598-019-53242-x

61. Den Besten G., Bleeker A., Gerding A., Van Eunen K., Havinga R., Van Dijk T.H., Oosterveer M.H., Jonker J.W., Groen A.K., Reijngoud D.J., et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a pparg-dependent switch from lipogenesis to fat oxidation. Diabetes 2015, 64, 2398–2408. doi: 10.2337/db14-1213

62. Zhou D, Pan Q, Xin FZ, Zhang RN, He CX, Chen GY, Liu C, Chen YW, Fan JG. Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier. World J Gastroenterol 2017; 23(1): 60-75 [PMID: 28104981 DOI: 10.3748/wjg.v23.i1.60

63. Weitkunat K., Schumann S., Nickel D., Kappo K.A., Petzke K.J., Kipp A.P., Blaut M., Klaus S. Importance of propionate for the repression of hepatic lipogenesis and improvement of insulin sensitivity in high-fat diet-induced obesity. Mol. Nutr. Food Res. 2016, 60, 2611–2621. https://doi.org/10.1002/mnfr.201600305

64. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61(2):364–71. doi:10.2337/db11-1019

65. Psichas A., Sleeth M L, Murphy K G, Brooks L, Bewick G A, Hanyaloglu A C , Ghatei M A, Bloom S R, Frost G. The short chain fatty acid propionate stimulates GLP 1 and PYY secretion via free fatty acid receptor 2 in rodents. Int. J. Obes.2014; 39: 424–429 doi: 10.1038/ijo.2014.153

66. Frost G., Sleeth M, Sahuri-Arisoylu M., Lizarbe B., Cerdan S., Brody L., Anastasovska J., Ghourab S. , et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nature Communications 2014; 5: 3611 doi: 10.1038/ncomms4611

67. Smitka K., Prochazkova P., Roubalova R., Dvorak J., Papezova H., Hill M., Pokorny J., Kittnar O., Bilej M., Tlaskalova-Hogenova H. Current Aspects of the Role of Autoantibodies Directed Against Appetite-Regulating Hormones and the Gut Microbiome in Eating Disorders Front Endocrinol (Lausanne). 2021;12:613983 doi: 10.3389/fendo.2021.613983

68. Zhou Y., Rui L. Leptin signaling and leptin resistance. Front Med. 2013; 7 (2): 207–22. doi: 10.1007/s11684-013-0263-5

69. Chambers E.S., Viardot A., Psichas A., Morrison DJ, Murphy K.G., Zac-Varghese S., MacDougall K., Preston T., Tedford C., Finlayson G. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults Gut. 2015;64(11):1744-54. doi: 10.1136/gutjnl-2014-307913

70. Chakraborti Ch. New-found link between microbiota and obesity World J Gastrointest Pathophysiol. 2015; 6(4): 110–119. doi: 10.4291/wjgp.v6.i4.110

71. Lu Y., Fan Ch. , Li P., Lu Y., Chang X, Qi K. Short Chain Fatty Acids Prevent High-fat-diet-induced Obesity in Mice by Regulating G Protein-coupled Receptors and Gut Microbiota Sci Rep 2016;6:37589. doi: 10.1038/srep37589

72. Ok E, Do GM, Lim Y, Park JE, Park YJ, Kwon O. Pomegranate vinegar attenuates adiposity in obese rats through coordinated control of AMPK signaling in the liver and adipose tissue. Lipids Health Dis. 2013;12:163. doi: 10.1186/1476-511X-12-16

73. Kong D, Schipper L, van Dijk G. Distinct Effects of Short Chain Fatty Acids on Host Energy Balance and Fuel Homeostasis With Focus on Route of Administration and Host Species. Front Neurosci. 2021;15:755845. doi: 10.3389/fnins.2021.755845

74. Kondo T., Kishi M., Fushimi T., Kaga, T. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation. J. Agric. Food Chem. 57, 5982–5986 (2009). doi: 10.1021/jf900470c

75. Guarino MPL, Altomare A, Emerenziani S, Di Rosa C, Ribolsi M, Balestrieri P, Iovino P, Rocchi G, Cicala M. Mechanisms of Action of Prebiotics and Their Effects on Gastro-Intestinal Disorders in Adults.Nutrients. 2020;12(4):1037. doi: 10.3390/nu12041037

76. Johnstone N, Dart S, Knytl P, Nauta A, Hart K, Cohen Kadosh K. Nutrient Intake and Gut Microbial Genera Changes after a 4-Week Placebo Controlled Galacto-Oligosaccharides Intervention in Young Females. Nutrients. 2021;13(12):4384. doi: 10.3390/nu13124384.

77. Slavin J. Fiber and prebiotics: mechanisms and health benefits Nutrients 2013;5(4):1417-35. doi: 10.3390/nu5041417

78. Backhed F., Manchester J.K., Semenkovich C.F., Gordon J.I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl. Acad. Sci. USA 2007, 104, 979–984 doi: 10.1073/pnas.0605374104

79. Wu H., Ballantyne C.M. Skeletal muscle inflammation and insulin resistance in obesity. J Clin Invest. 2017;127(1):43-54. doi:10.1172/JCI88880

80. Cheng K.H., Chu C.S., Lee K.T., Lin T.H., Hsieh C.C., et al. Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease. Int J Obes (Lond). 2008;32:2268-74. doi:10.1038/sj.ijo.0803726

81. Amabebe E, Anumba D. Female Gut and Genital Tract Microbiota-Induced Crosstalk and Differential Effects of Short-Chain Fatty Acids on Immune Sequelae. Front Immunol. 2020;11:2184. doi: 10.3389/fimmu.2020.02184

82. Scheithauer T., Rampanelli E., Nieuwdorp M., Vallance B., Verchere C., van Raalte D., Herrema H. Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Front. Immunol. 2020; 11: 571731 doi:10.3389/fimmu.2020.571731

83. Elamin E. E., Masclee A. A., Dekker J., Pieters H. J., Jonkers D. M. Short-chain fatty acids activate AMP-activated protein kinase and ameliorate ethanol-induced intestinal barrier dysfunction in Caco 2 cell monolayers. J. Nutr. 2013;143: 1872–1881 doi: 10.3945/jn.113.179549

84. Cho YE, Kim DK, Seo W, Gao B, Yoo SH, Song BJ. Fructose Promotes Leaky Gut, Endotoxemia, and Liver Fibrosis Through Ethanol-Inducible Cytochrome P450-2E1-Mediated Oxidative and Nitrative Stress. Hepatology. 2021;73(6):2180-2195. doi: 10.1002/hep.30652

85. Neyrinck AM, Rodriguez J, Zhang Z, Seethaler B, Sánchez CR, Roumain M, Hiel S, Bindels LB, Cani PD, Paquot N, Cnop M, Nazare JA, Laville M, Muccioli GG, Bischoff SC, Walter J, Thissen JP, Delzenne NM. Prebiotic dietary fibre intervention improves fecal markers related to inflammation in obese patients: results from the Food4Gut randomized placebo-controlled trial. Eur J Nutr. 2021 ;60(6):3159-3170. doi: 10.1007/s00394-021-02484-5

86. Liu T. Li J., Liu Y., Xiao N., Suo H., Xie K., Yang Ch, Wu Ch. Short-chain fatty acids suppress lipopolysaccharide-induced production of nitric oxide and proinflammatory cytokines through inhibition of NF κB pathway in RAW264.7 cells. Inflammation 2012;35: 1676–1684 doi: 10.1007/s10753-012-9484-z.

87. Rim HK, Cho W, Sung SH, Lee KT. Nodakenin suppresses lipopolysaccharide-induced inflammatory responses in macrophage cells by inhibiting tumor necrosis factor receptor-associated factor 6 and nuclear factor-κB pathways and protects mice from lethal endotoxin shock. J Pharmacol Exp Ther. 2012;342(3):654-64. doi: 10.1124/jpet.112.194613

88. Stofan M., Guo G. Bile Acids and FXR: Novel Targets for Liver Diseases Frontiers in Medicine 2020;7:544 https://doi.org/10.3389/fmed.2020.00544

89. Cariou B, Bouchaert E, Abdelkarim M, Dumont J, Caron S, Fruchart J, Burcelin R, Kuipers F, Staels B. FXR-deficiency confers increased susceptibility to torpor FEBS Lett. 2007;581(27):5191-8. doi: 10.1016/j.febslet.2007.09.064.

90. Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev 2009; 1: 147-191. doi: 10.1152/physrev.00010.2008

91. Swann J R, Want E J, Geier F M, Spagou K, Wilson I D, Sidaway J E, Nicholson JK, Holmes E. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci U S A 2011; 108: 4523-4530. doi: 10.1073/pnas.1006734107

92. Thomas C, Gioiello A, Noriega I, Sttrehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C, Pruzansk I M, Pellicciari R, Auwerx J, Schoonjans K. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 2009; 3: 167-177 doi: 10.1016/j.cmet.2009.08.001

93. Watanabe M., Houten S.M., Mataki C., et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006; 439: 484-9. doi: 10.1038/nature04330

94. Watanabe M., Houten S.M., Mataki C., et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006; 439: 484-9. doi: 10.1038/nature04330

95. Thomas C., Gioiello A., Noriega L., et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metabolism 2009; 10:167-77. doi: 10.1016/j.cmet.2009.08.001

96. Mouzaki M., Wang A.Y., Bandsma R., et al. Bile Acids and Dysbiosis in Non-Alcoholic Fatty Liver Disease. PLoS ONE. 2016;11(5):e0151829. doi: 10.1371/journal.pone.0151829

97. Adams LA, Wang Z, Liddle C, et al. Bile acids associate with specific gut microbiota, low-level alcohol consumption and liver fibrosis in patients with non-alcoholic fatty liver disease. Liver Int. 2020;40(6):1356-1365. doi:10.1111/liv.14453

98. Kalhan SC, Guo L, Edmison J, et al. Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism. 2011;60(3):404-413. doi:10.1016/j.metabol.2010.03.006

99. Dai X, Hou H, Zhang W, Liu T, Li Y, Wang S, Wang B, Cao H. Microbial Metabolites: Critical Regulators in NAFLD. Front Microbiol. 2020;11:567654. doi:10.3389/fmicb.2020.567654.

100. Yuan J, Chen C, Cui J, Lu J, Yan C, Wei X, Zhao X, Li N, Li S, Xue G, Cheng W, Li B, Li H, Lin W, Tian C, Zhao J, Han J, An D, Zhang Q, Wei H, Zheng M, Ma X, Li W, Chen X, Zhang Z, Zeng H, Ying S, Wu J, Yang R, Liu D. Fatty Liver Disease Caused by High-Alcohol-Producing Klebsiella pneumoniae. Cell Metab. 2019;30(4):675-688.e7. doi: 10.1016/j.cmet.2019.08.018

101. Chen X, Zhang Z, Li H, Zhao J, Wei X, Lin W, Zhao X, Jiang A, Yuan J. Endogenous ethanol produced by intestinal bacteria induces mitochondrial dysfunction in non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2020;35(11):2009-2019. doi: 10.1111/jgh.15027

102. Coрe K, Risby T, Diehl A. Increased gastrointestinal ethanol production in obese mice: implications for fatty liver disease pathogenesis. Gastroenterol 2000; 5: 1340-1347 doi: 10.1053/gast.2000.19267

103. Nair S., Cope K., Risby T.H., Diehl A.M. Obesity and female gender increase breath ethanol concentration: potential implications for the pathogenesis of nonalcoholic steatohepatitis Am J Gastroenterol. 2001;96:1200–1204. doi: 10.1111/j.1572-0241.2001.03702.x

104. Zhu L., Baker S.S., Gill C. et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH Hepatology. 2013;57:601–609. doi: 10.1002/hep.26093

105. Sajjad A., Mottershead M., Syn W.K. et al. Ciprofloxacin suppresses bacterial overgrowth, increases fasting insulin but does not correct low acylated ghrelin concentration in non-alcoholic steatohepatitis Aliment Pharmacol Ther. 2005;22: 291–299. doi: 10.1111/j.1365-2036.2005.02562.x

106. Cummings NE, Williams EM, Kasza I, Konon EN, Schaid MD, Schmidt BA, et al. Restoration of metabolic health by decreased consumption of branched-chain amino acids. J Physiol. 2018;596(4):623–45. doi:10.1113/JP275075.

107. Ruiz-Canela M, Guasch-Ferre M, Toledo E, Clish CB, Razquin C, Liang LM, et al. Plasma branched chain/aromatic amino acids, enriched Mediterranean diet and risk of type 2 diabetes: case-cohort study within the PREDIMED Trial. Diabetologia. 2018;61(7):1560–71. doi:10.1007/s00125-018-4611-5

108. Pedersen H., Gudmundsdottir V., Nielsen H., Hyotylainen T., Nielsen T., Jensen B., Forslund K., Hildebrand F., et al. Human gut microbes impact host serum metabolome and insulin sensitivity Nature 2016;535(7612):376-81. doi: 10.1038/nature18646.

109. Gao H, Shu Q, Chen J, Fan K, Xu P, Zhou Q, Li C, Zheng H. Antibiotic Exposure Has Sex-Dependent Effects on the Gut Microbiota and Metabolism of Short-Chain Fatty Acids and Amino Acids in Mice. mSystems. 20194;4(4):e00048-19. doi: 10.1128/mSystems.00048-19.

110. Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Com-Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Com xenobiotic metabolism. Endocr Rev. 2002;23(5): 687–702. doi: 10.1210/er.2001-0038.1

111. Ma L, Li H, Hu J, Zheng J, Zhou J, Botchlett R,Matthews D, Zeng T, Chen L, Xiao X, Athrey G, Threadgill DW, Li Q, Glaser S, Francis H, Meng F, Li Q, Alpini G, Wu C. Indole Alleviates Diet-Induced Hepatic Steatosis and Inflammation in a Manner Involving Myeloid Cell 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 3. Hepatology. 2020;72(4):1191–203. doi: 10.1002/hep.31115

112. Ji Y, Yin Y, Li Z, Zhang W. Gut Microbiota-Derived Components and Metabolites in the Progression of Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients. 2019;11(8): 1712. doi:10.3390/nu11081712

113. Liu F, Sun C, Chen Y, Du F, Yang Y, Wu G. Indole-3-propionic Acid-aggravated CCl4-induced Liver Fibrosis via the TGF-β1/Smads Signaling Pathway. J Clin Transl Hepatol. 2021 Dec 28;9(6):917-930. doi: 10.14218/JCTH.2021.00032

114. Zhao ZH, Xin FZ, Xue Y, Hu Z, Han Y, Ma F, Zhou D, Liu XL, Cui A, Liu Z, Liu Y, Gao J, Pan Q, Li Y, Fan JG. Indole-3-propionic acid inhibits gut dysbiosis and endotoxin leakage to attenuate steatohepatitis in rats. Exp Mol Med. 2019;51(9): 1–14. doi: 10.1038/s12276-019-0304-5

115. Shcherbakova ES, Sall TS, Sitkin SI, Vakhitov TY, Demyanova EV. The role of bacterial metabolites derived from aromatic amino acids in non-alcoholic fatty liver disease. Almanac of Clinical Medicine. 2020;48(6):375–86. doi: 10.18786/2072-0505-2020-48-066

116. Delzenne NM, Bindels LB. Microbiome metabolomics reveals new drivers of human liver steatosis. Nat Med. 2018;24(7): 906–7. doi:10.1038/s41591-018-0126-3

117. Safari Z, Gérard P. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cell Mol Life Sci. 2019;76(8):1541-1558. doi: 10.1007/s00018-019-03011-w

118. Xie C, Halegoua-DeMarzio D. Role of probiotics in non-alcoholic fatty liver disease: does gut microbiota matter? Nutrients.2019;11(11): 2837. doi: 10.3390/nu11112837

119. Barrea L, Annunziata G, Muscogiuri G, Di Somma C, Laudisio D, Maisto M, de Alteriis G, Tenore GC, Colao A, Savastano S. Trimethylamine-N-oxide (TMAO) as Novel Potential Biomarker of Early Predictors of Metabolic Syndrome. Nutrients. 2018;10(12):1971. doi: 10.3390/nu10121971.

120. León-Mimila P, Villamil-Ramírez H, Li XS, Shih DM, Hui ST, Ocampo-Medina E, López-Contreras B, Morán-Ramos S, Olivares-Arevalo M, et al. Trimethylamine N-oxide levels are associated with NASH in obese subjects with type 2 diabetes. Diabetes Metab. 2021;47(2):101183. doi: 10.1016/j.diabet.2020.07.010.

121. Loman BR, Hernández-Saavedra D, An R, Rector RS. Prebiotic and probiotic treatment of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Nutr Rev. 2018;76(11):822-839. doi: 10.1093/nutrit/nuy031

122. Xiao MW, Lin SX, Shen ZH, Luo WW, Wang XY. Systematic Review with Meta-Analysis: The Effects of Probiotics in Nonalcoholic Fatty Liver Disease. Gastroenterol Res Pract. 2019;2019:1484598. doi: 10.1155/2019/1484598

123. Liu L, Li P., Lui Y., Zhang Y. Efficacy of Probiotics and Synbiotics in Patients with Nonalcoholic Fatty Liver Disease: A Meta-Analysis. Dig Dis Sci. 2019;64(12):3402-3412. doi: 10.1007/s10620-019-05699-z

124. Jin H, Xu X, Pang B, Yang R, Sun H, Jiang C, Shao D, Probiotic and prebiotic interventions for non-alcoholic fatty liver disease: a systematic review and network meta-analysis. Shi J. Benef Microbes. 2021;12(6):517-529. doi: 10.3920/BM2020.0183

125. Yang R., Shang J., Zhou Y., Liu W., Tian Y., Shang H. Effects of probiotics on nonalcoholic fatty liver disease: a systematic review and meta-analysis Expert Rev Gastroenterol Hepatol. 2021;15(12):1401-1409. doi: 10.1080/17474124.2022.2016391


Дополнительные файлы

Рецензия

Для цитирования:


Решетова М.С., Зольникова О.Ю., Ивашкин В.Т., Ивашкин К.В., Апполонова С.А., Лапина Т.Л. Роль кишечной микробиоты и ее метаболитов в патогенезе неалкогольной жировой болезни печени. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2022;32(5):75-88. https://doi.org/10.22416/1382-4376-2022-32-5-75-88

For citation:


Reshetova M.S., Zolnikova O.Yu., Ivashkin V.T., Ivashkin K.V., Appolonova S.A., Lapina T.L. Gut Microbiota and its Metabolites in Pathogenesis of NAFLD. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2022;32(5):75-88. https://doi.org/10.22416/1382-4376-2022-32-5-75-88

Просмотров: 1126


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.


ISSN 1382-4376 (Print)
ISSN 2658-6673 (Online)